1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
|
//===- Deserializer.h - MLIR SPIR-V Deserializer ----------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file declares the SPIR-V binary to MLIR SPIR-V module deserializer.
//
//===----------------------------------------------------------------------===//
#ifndef MLIR_TARGET_SPIRV_DESERIALIZER_H
#define MLIR_TARGET_SPIRV_DESERIALIZER_H
#include "mlir/Dialect/SPIRV/IR/SPIRVEnums.h"
#include "mlir/Dialect/SPIRV/IR/SPIRVOps.h"
#include "mlir/IR/Builders.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/ScopedPrinter.h"
#include <cstdint>
#include <optional>
namespace mlir {
namespace spirv {
//===----------------------------------------------------------------------===//
// Utility Definitions
//===----------------------------------------------------------------------===//
/// A struct for containing a header block's merge and continue targets.
///
/// This struct is used to track original structured control flow info from
/// SPIR-V blob. This info will be used to create
/// spirv.mlir.selection/spirv.mlir.loop later.
struct BlockMergeInfo {
Block *mergeBlock;
Block *continueBlock; // nullptr for spirv.mlir.selection
Location loc;
uint32_t control; // Selection/loop control
BlockMergeInfo(Location location, uint32_t control)
: mergeBlock(nullptr), continueBlock(nullptr), loc(location),
control(control) {}
BlockMergeInfo(Location location, uint32_t control, Block *m,
Block *c = nullptr)
: mergeBlock(m), continueBlock(c), loc(location), control(control) {}
};
/// A struct for containing OpLine instruction information.
struct DebugLine {
uint32_t fileID;
uint32_t line;
uint32_t column;
};
/// Map from a selection/loop's header block to its merge (and continue) target.
using BlockMergeInfoMap = DenseMap<Block *, BlockMergeInfo>;
/// A "deferred struct type" is a struct type with one or more member types not
/// known when the Deserializer first encounters the struct. This happens, for
/// example, with recursive structs where a pointer to the struct type is
/// forward declared through OpTypeForwardPointer in the SPIR-V module before
/// the struct declaration; the actual pointer to struct type should be defined
/// later through an OpTypePointer. For example, the following C struct:
///
/// struct A {
/// A* next;
/// };
///
/// would be represented in the SPIR-V module as:
///
/// OpName %A "A"
/// OpTypeForwardPointer %APtr Generic
/// %A = OpTypeStruct %APtr
/// %APtr = OpTypePointer Generic %A
///
/// This means that the spirv::StructType cannot be fully constructed directly
/// when the Deserializer encounters it. Instead we create a
/// DeferredStructTypeInfo that contains all the information we know about the
/// spirv::StructType. Once all forward references for the struct are resolved,
/// the struct's body is set with all member info.
struct DeferredStructTypeInfo {
spirv::StructType deferredStructType;
// A list of all unresolved member types for the struct. First element of each
// item is operand ID, second element is member index in the struct.
SmallVector<std::pair<uint32_t, unsigned>, 0> unresolvedMemberTypes;
// The list of member types. For unresolved members, this list contains
// place-holder empty types that will be updated later.
SmallVector<Type, 4> memberTypes;
SmallVector<spirv::StructType::OffsetInfo, 0> offsetInfo;
SmallVector<spirv::StructType::MemberDecorationInfo, 0> memberDecorationsInfo;
};
/// A struct that collects the info needed to materialize/emit a
/// SpecConstantOperation op.
struct SpecConstOperationMaterializationInfo {
spirv::Opcode enclodesOpcode;
uint32_t resultTypeID;
SmallVector<uint32_t> enclosedOpOperands;
};
//===----------------------------------------------------------------------===//
// Deserializer Declaration
//===----------------------------------------------------------------------===//
/// A SPIR-V module serializer.
///
/// A SPIR-V binary module is a single linear stream of instructions; each
/// instruction is composed of 32-bit words. The first word of an instruction
/// records the total number of words of that instruction using the 16
/// higher-order bits. So this deserializer uses that to get instruction
/// boundary and parse instructions and build a SPIR-V ModuleOp gradually.
///
// TODO: clean up created ops on errors
class Deserializer {
public:
/// Creates a deserializer for the given SPIR-V `binary` module.
/// The SPIR-V ModuleOp will be created into `context.
explicit Deserializer(ArrayRef<uint32_t> binary, MLIRContext *context);
/// Deserializes the remembered SPIR-V binary module.
LogicalResult deserialize();
/// Collects the final SPIR-V ModuleOp.
OwningOpRef<spirv::ModuleOp> collect();
private:
//===--------------------------------------------------------------------===//
// Module structure
//===--------------------------------------------------------------------===//
/// Initializes the `module` ModuleOp in this deserializer instance.
OwningOpRef<spirv::ModuleOp> createModuleOp();
/// Processes SPIR-V module header in `binary`.
LogicalResult processHeader();
/// Processes the SPIR-V OpCapability with `operands` and updates bookkeeping
/// in the deserializer.
LogicalResult processCapability(ArrayRef<uint32_t> operands);
/// Processes the SPIR-V OpExtension with `operands` and updates bookkeeping
/// in the deserializer.
LogicalResult processExtension(ArrayRef<uint32_t> words);
/// Processes the SPIR-V OpExtInstImport with `operands` and updates
/// bookkeeping in the deserializer.
LogicalResult processExtInstImport(ArrayRef<uint32_t> words);
/// Attaches (version, capabilities, extensions) triple to `module` as an
/// attribute.
void attachVCETriple();
/// Processes the SPIR-V OpMemoryModel with `operands` and updates `module`.
LogicalResult processMemoryModel(ArrayRef<uint32_t> operands);
/// Process SPIR-V OpName with `operands`.
LogicalResult processName(ArrayRef<uint32_t> operands);
/// Processes an OpDecorate instruction.
LogicalResult processDecoration(ArrayRef<uint32_t> words);
// Processes an OpMemberDecorate instruction.
LogicalResult processMemberDecoration(ArrayRef<uint32_t> words);
/// Processes an OpMemberName instruction.
LogicalResult processMemberName(ArrayRef<uint32_t> words);
/// Gets the function op associated with a result <id> of OpFunction.
spirv::FuncOp getFunction(uint32_t id) { return funcMap.lookup(id); }
/// Processes the SPIR-V function at the current `offset` into `binary`.
/// The operands to the OpFunction instruction is passed in as ``operands`.
/// This method processes each instruction inside the function and dispatches
/// them to their handler method accordingly.
LogicalResult processFunction(ArrayRef<uint32_t> operands);
/// Processes OpFunctionEnd and finalizes function. This wires up block
/// argument created from OpPhi instructions and also structurizes control
/// flow.
LogicalResult processFunctionEnd(ArrayRef<uint32_t> operands);
/// Gets the constant's attribute and type associated with the given <id>.
std::optional<std::pair<Attribute, Type>> getConstant(uint32_t id);
/// Gets the info needed to materialize the spec constant operation op
/// associated with the given <id>.
std::optional<SpecConstOperationMaterializationInfo>
getSpecConstantOperation(uint32_t id);
/// Gets the constant's integer attribute with the given <id>. Returns a
/// null IntegerAttr if the given is not registered or does not correspond
/// to an integer constant.
IntegerAttr getConstantInt(uint32_t id);
/// Returns a symbol to be used for the function name with the given
/// result <id>. This tries to use the function's OpName if
/// exists; otherwise creates one based on the <id>.
std::string getFunctionSymbol(uint32_t id);
/// Returns a symbol to be used for the specialization constant with the given
/// result <id>. This tries to use the specialization constant's OpName if
/// exists; otherwise creates one based on the <id>.
std::string getSpecConstantSymbol(uint32_t id);
/// Gets the specialization constant with the given result <id>.
spirv::SpecConstantOp getSpecConstant(uint32_t id) {
return specConstMap.lookup(id);
}
/// Gets the composite specialization constant with the given result <id>.
spirv::SpecConstantCompositeOp getSpecConstantComposite(uint32_t id) {
return specConstCompositeMap.lookup(id);
}
/// Creates a spirv::SpecConstantOp.
spirv::SpecConstantOp createSpecConstant(Location loc, uint32_t resultID,
TypedAttr defaultValue);
/// Processes the OpVariable instructions at current `offset` into `binary`.
/// It is expected that this method is used for variables that are to be
/// defined at module scope and will be deserialized into a
/// spirv.GlobalVariable instruction.
LogicalResult processGlobalVariable(ArrayRef<uint32_t> operands);
/// Gets the global variable associated with a result <id> of OpVariable.
spirv::GlobalVariableOp getGlobalVariable(uint32_t id) {
return globalVariableMap.lookup(id);
}
//===--------------------------------------------------------------------===//
// Type
//===--------------------------------------------------------------------===//
/// Gets type for a given result <id>.
Type getType(uint32_t id) { return typeMap.lookup(id); }
/// Get the type associated with the result <id> of an OpUndef.
Type getUndefType(uint32_t id) { return undefMap.lookup(id); }
/// Returns true if the given `type` is for SPIR-V void type.
bool isVoidType(Type type) const { return isa<NoneType>(type); }
/// Processes a SPIR-V type instruction with given `opcode` and `operands` and
/// registers the type into `module`.
LogicalResult processType(spirv::Opcode opcode, ArrayRef<uint32_t> operands);
LogicalResult processOpTypePointer(ArrayRef<uint32_t> operands);
LogicalResult processArrayType(ArrayRef<uint32_t> operands);
LogicalResult processCooperativeMatrixType(ArrayRef<uint32_t> operands);
LogicalResult processFunctionType(ArrayRef<uint32_t> operands);
LogicalResult processJointMatrixType(ArrayRef<uint32_t> operands);
LogicalResult processImageType(ArrayRef<uint32_t> operands);
LogicalResult processSampledImageType(ArrayRef<uint32_t> operands);
LogicalResult processRuntimeArrayType(ArrayRef<uint32_t> operands);
LogicalResult processStructType(ArrayRef<uint32_t> operands);
LogicalResult processMatrixType(ArrayRef<uint32_t> operands);
LogicalResult processTypeForwardPointer(ArrayRef<uint32_t> operands);
//===--------------------------------------------------------------------===//
// Constant
//===--------------------------------------------------------------------===//
/// Processes a SPIR-V Op{|Spec}Constant instruction with the given
/// `operands`. `isSpec` indicates whether this is a specialization constant.
LogicalResult processConstant(ArrayRef<uint32_t> operands, bool isSpec);
/// Processes a SPIR-V Op{|Spec}Constant{True|False} instruction with the
/// given `operands`. `isSpec` indicates whether this is a specialization
/// constant.
LogicalResult processConstantBool(bool isTrue, ArrayRef<uint32_t> operands,
bool isSpec);
/// Processes a SPIR-V OpConstantComposite instruction with the given
/// `operands`.
LogicalResult processConstantComposite(ArrayRef<uint32_t> operands);
/// Processes a SPIR-V OpSpecConstantComposite instruction with the given
/// `operands`.
LogicalResult processSpecConstantComposite(ArrayRef<uint32_t> operands);
/// Processes a SPIR-V OpSpecConstantOp instruction with the given
/// `operands`.
LogicalResult processSpecConstantOperation(ArrayRef<uint32_t> operands);
/// Materializes/emits an OpSpecConstantOp instruction.
Value materializeSpecConstantOperation(uint32_t resultID,
spirv::Opcode enclosedOpcode,
uint32_t resultTypeID,
ArrayRef<uint32_t> enclosedOpOperands);
/// Processes a SPIR-V OpConstantNull instruction with the given `operands`.
LogicalResult processConstantNull(ArrayRef<uint32_t> operands);
//===--------------------------------------------------------------------===//
// Debug
//===--------------------------------------------------------------------===//
/// Discontinues any source-level location information that might be active
/// from a previous OpLine instruction.
void clearDebugLine();
/// Creates a FileLineColLoc with the OpLine location information.
Location createFileLineColLoc(OpBuilder opBuilder);
/// Processes a SPIR-V OpLine instruction with the given `operands`.
LogicalResult processDebugLine(ArrayRef<uint32_t> operands);
/// Processes a SPIR-V OpString instruction with the given `operands`.
LogicalResult processDebugString(ArrayRef<uint32_t> operands);
//===--------------------------------------------------------------------===//
// Control flow
//===--------------------------------------------------------------------===//
/// Returns the block for the given label <id>.
Block *getBlock(uint32_t id) const { return blockMap.lookup(id); }
// In SPIR-V, structured control flow is explicitly declared using merge
// instructions (OpSelectionMerge and OpLoopMerge). In the SPIR-V dialect,
// we use spirv.mlir.selection and spirv.mlir.loop to group structured control
// flow. The deserializer need to turn structured control flow marked with
// merge instructions into using spirv.mlir.selection/spirv.mlir.loop ops.
//
// Because structured control flow can nest and the basic block order have
// flexibility, we cannot isolate a structured selection/loop without
// deserializing all the blocks. So we use the following approach:
//
// 1. Deserialize all basic blocks in a function and create MLIR blocks for
// them into the function's region. In the meanwhile, keep a map between
// selection/loop header blocks to their corresponding merge (and continue)
// target blocks.
// 2. For each selection/loop header block, recursively get all basic blocks
// reachable (except the merge block) and put them in a newly created
// spirv.mlir.selection/spirv.mlir.loop's region. Structured control flow
// guarantees that we enter and exit in structured ways and the construct
// is nestable.
// 3. Put the new spirv.mlir.selection/spirv.mlir.loop op at the beginning of
// the
// old merge block and redirect all branches to the old header block to the
// old merge block (which contains the spirv.mlir.selection/spirv.mlir.loop
// op now).
/// For OpPhi instructions, we use block arguments to represent them. OpPhi
/// encodes a list of (value, predecessor) pairs. At the time of handling the
/// block containing an OpPhi instruction, the predecessor block might not be
/// processed yet, also the value sent by it. So we need to defer handling
/// the block argument from the predecessors. We use the following approach:
///
/// 1. For each OpPhi instruction, add a block argument to the current block
/// in construction. Record the block argument in `valueMap` so its uses
/// can be resolved. For the list of (value, predecessor) pairs, update
/// `blockPhiInfo` for bookkeeping.
/// 2. After processing all blocks, loop over `blockPhiInfo` to fix up each
/// block recorded there to create the proper block arguments on their
/// terminators.
/// A data structure for containing a SPIR-V block's phi info. It will be
/// represented as block argument in SPIR-V dialect.
using BlockPhiInfo =
SmallVector<uint32_t, 2>; // The result <id> of the values sent
/// Gets or creates the block corresponding to the given label <id>. The newly
/// created block will always be placed at the end of the current function.
Block *getOrCreateBlock(uint32_t id);
LogicalResult processBranch(ArrayRef<uint32_t> operands);
LogicalResult processBranchConditional(ArrayRef<uint32_t> operands);
/// Processes a SPIR-V OpLabel instruction with the given `operands`.
LogicalResult processLabel(ArrayRef<uint32_t> operands);
/// Processes a SPIR-V OpSelectionMerge instruction with the given `operands`.
LogicalResult processSelectionMerge(ArrayRef<uint32_t> operands);
/// Processes a SPIR-V OpLoopMerge instruction with the given `operands`.
LogicalResult processLoopMerge(ArrayRef<uint32_t> operands);
/// Processes a SPIR-V OpPhi instruction with the given `operands`.
LogicalResult processPhi(ArrayRef<uint32_t> operands);
/// Creates block arguments on predecessors previously recorded when handling
/// OpPhi instructions.
LogicalResult wireUpBlockArgument();
/// Extracts blocks belonging to a structured selection/loop into a
/// spirv.mlir.selection/spirv.mlir.loop op. This method iterates until all
/// blocks declared as selection/loop headers are handled.
LogicalResult structurizeControlFlow();
//===--------------------------------------------------------------------===//
// Instruction
//===--------------------------------------------------------------------===//
/// Get the Value associated with a result <id>.
///
/// This method materializes normal constants and inserts "casting" ops
/// (`spirv.mlir.addressof` and `spirv.mlir.referenceof`) to turn an symbol
/// into a SSA value for handling uses of module scope constants/variables in
/// functions.
Value getValue(uint32_t id);
/// Slices the first instruction out of `binary` and returns its opcode and
/// operands via `opcode` and `operands` respectively. Returns failure if
/// there is no more remaining instructions (`expectedOpcode` will be used to
/// compose the error message) or the next instruction is malformed.
LogicalResult
sliceInstruction(spirv::Opcode &opcode, ArrayRef<uint32_t> &operands,
std::optional<spirv::Opcode> expectedOpcode = std::nullopt);
/// Processes a SPIR-V instruction with the given `opcode` and `operands`.
/// This method is the main entrance for handling SPIR-V instruction; it
/// checks the instruction opcode and dispatches to the corresponding handler.
/// Processing of Some instructions (like OpEntryPoint and OpExecutionMode)
/// might need to be deferred, since they contain forward references to <id>s
/// in the deserialized binary, but module in SPIR-V dialect expects these to
/// be ssa-uses.
LogicalResult processInstruction(spirv::Opcode opcode,
ArrayRef<uint32_t> operands,
bool deferInstructions = true);
/// Processes a SPIR-V instruction from the given `operands`. It should
/// deserialize into an op with the given `opName` and `numOperands`.
/// This method is a generic one for dispatching any SPIR-V ops without
/// variadic operands and attributes in TableGen definitions.
LogicalResult processOpWithoutGrammarAttr(ArrayRef<uint32_t> words,
StringRef opName, bool hasResult,
unsigned numOperands);
/// Processes a OpUndef instruction. Adds a spirv.Undef operation at the
/// current insertion point.
LogicalResult processUndef(ArrayRef<uint32_t> operands);
/// Method to dispatch to the specialized deserialization function for an
/// operation in SPIR-V dialect that is a mirror of an instruction in the
/// SPIR-V spec. This is auto-generated from ODS. Dispatch is handled for
/// all operations in SPIR-V dialect that have hasOpcode == 1.
LogicalResult dispatchToAutogenDeserialization(spirv::Opcode opcode,
ArrayRef<uint32_t> words);
/// Processes a SPIR-V OpExtInst with given `operands`. This slices the
/// entries of `operands` that specify the extended instruction set <id> and
/// the instruction opcode. The op deserializer is then invoked using the
/// other entries.
LogicalResult processExtInst(ArrayRef<uint32_t> operands);
/// Dispatches the deserialization of extended instruction set operation based
/// on the extended instruction set name, and instruction opcode. This is
/// autogenerated from ODS.
LogicalResult
dispatchToExtensionSetAutogenDeserialization(StringRef extensionSetName,
uint32_t instructionID,
ArrayRef<uint32_t> words);
/// Method to deserialize an operation in the SPIR-V dialect that is a mirror
/// of an instruction in the SPIR-V spec. This is auto generated if hasOpcode
/// == 1 and autogenSerialization == 1 in ODS.
template <typename OpTy>
LogicalResult processOp(ArrayRef<uint32_t> words) {
return emitError(unknownLoc, "unsupported deserialization for ")
<< OpTy::getOperationName() << " op";
}
private:
/// The SPIR-V binary module.
ArrayRef<uint32_t> binary;
/// Contains the data of the OpLine instruction which precedes the current
/// processing instruction.
std::optional<DebugLine> debugLine;
/// The current word offset into the binary module.
unsigned curOffset = 0;
/// MLIRContext to create SPIR-V ModuleOp into.
MLIRContext *context;
// TODO: create Location subclass for binary blob
Location unknownLoc;
/// The SPIR-V ModuleOp.
OwningOpRef<spirv::ModuleOp> module;
/// The current function under construction.
std::optional<spirv::FuncOp> curFunction;
/// The current block under construction.
Block *curBlock = nullptr;
OpBuilder opBuilder;
spirv::Version version = spirv::Version::V_1_0;
/// The list of capabilities used by the module.
llvm::SmallSetVector<spirv::Capability, 4> capabilities;
/// The list of extensions used by the module.
llvm::SmallSetVector<spirv::Extension, 2> extensions;
// Result <id> to type mapping.
DenseMap<uint32_t, Type> typeMap;
// Result <id> to constant attribute and type mapping.
///
/// In the SPIR-V binary format, all constants are placed in the module and
/// shared by instructions at module level and in subsequent functions. But in
/// the SPIR-V dialect, we materialize the constant to where it's used in the
/// function. So when seeing a constant instruction in the binary format, we
/// don't immediately emit a constant op into the module, we keep its value
/// (and type) here. Later when it's used, we materialize the constant.
DenseMap<uint32_t, std::pair<Attribute, Type>> constantMap;
// Result <id> to spec constant mapping.
DenseMap<uint32_t, spirv::SpecConstantOp> specConstMap;
// Result <id> to composite spec constant mapping.
DenseMap<uint32_t, spirv::SpecConstantCompositeOp> specConstCompositeMap;
/// Result <id> to info needed to materialize an OpSpecConstantOp
/// mapping.
DenseMap<uint32_t, SpecConstOperationMaterializationInfo>
specConstOperationMap;
// Result <id> to variable mapping.
DenseMap<uint32_t, spirv::GlobalVariableOp> globalVariableMap;
// Result <id> to function mapping.
DenseMap<uint32_t, spirv::FuncOp> funcMap;
// Result <id> to block mapping.
DenseMap<uint32_t, Block *> blockMap;
// Header block to its merge (and continue) target mapping.
BlockMergeInfoMap blockMergeInfo;
// For each pair of {predecessor, target} blocks, maps the pair of blocks to
// the list of phi arguments passed from predecessor to target.
DenseMap<std::pair<Block * /*predecessor*/, Block * /*target*/>, BlockPhiInfo>
blockPhiInfo;
// Result <id> to value mapping.
DenseMap<uint32_t, Value> valueMap;
// Mapping from result <id> to undef value of a type.
DenseMap<uint32_t, Type> undefMap;
// Result <id> to name mapping.
DenseMap<uint32_t, StringRef> nameMap;
// Result <id> to debug info mapping.
DenseMap<uint32_t, StringRef> debugInfoMap;
// Result <id> to decorations mapping.
DenseMap<uint32_t, NamedAttrList> decorations;
// Result <id> to type decorations.
DenseMap<uint32_t, uint32_t> typeDecorations;
// Result <id> to member decorations.
// decorated-struct-type-<id> ->
// (struct-member-index -> (decoration -> decoration-operands))
DenseMap<uint32_t,
DenseMap<uint32_t, DenseMap<spirv::Decoration, ArrayRef<uint32_t>>>>
memberDecorationMap;
// Result <id> to member name.
// struct-type-<id> -> (struct-member-index -> name)
DenseMap<uint32_t, DenseMap<uint32_t, StringRef>> memberNameMap;
// Result <id> to extended instruction set name.
DenseMap<uint32_t, StringRef> extendedInstSets;
// List of instructions that are processed in a deferred fashion (after an
// initial processing of the entire binary). Some operations like
// OpEntryPoint, and OpExecutionMode use forward references to function
// <id>s. In SPIR-V dialect the corresponding operations (spirv.EntryPoint and
// spirv.ExecutionMode) need these references resolved. So these instructions
// are deserialized and stored for processing once the entire binary is
// processed.
SmallVector<std::pair<spirv::Opcode, ArrayRef<uint32_t>>, 4>
deferredInstructions;
/// A list of IDs for all types forward-declared through OpTypeForwardPointer
/// instructions.
SetVector<uint32_t> typeForwardPointerIDs;
/// A list of all structs which have unresolved member types.
SmallVector<DeferredStructTypeInfo, 0> deferredStructTypesInfos;
#ifndef NDEBUG
/// A logger used to emit information during the deserialzation process.
llvm::ScopedPrinter logger;
#endif
};
} // namespace spirv
} // namespace mlir
#endif // MLIR_TARGET_SPIRV_DESERIALIZER_H
|