File: Deserializer.h

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (615 lines) | stat: -rw-r--r-- 26,269 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
//===- Deserializer.h - MLIR SPIR-V Deserializer ----------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file declares the SPIR-V binary to MLIR SPIR-V module deserializer.
//
//===----------------------------------------------------------------------===//

#ifndef MLIR_TARGET_SPIRV_DESERIALIZER_H
#define MLIR_TARGET_SPIRV_DESERIALIZER_H

#include "mlir/Dialect/SPIRV/IR/SPIRVEnums.h"
#include "mlir/Dialect/SPIRV/IR/SPIRVOps.h"
#include "mlir/IR/Builders.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/ScopedPrinter.h"
#include <cstdint>
#include <optional>

namespace mlir {
namespace spirv {

//===----------------------------------------------------------------------===//
// Utility Definitions
//===----------------------------------------------------------------------===//

/// A struct for containing a header block's merge and continue targets.
///
/// This struct is used to track original structured control flow info from
/// SPIR-V blob. This info will be used to create
/// spirv.mlir.selection/spirv.mlir.loop later.
struct BlockMergeInfo {
  Block *mergeBlock;
  Block *continueBlock; // nullptr for spirv.mlir.selection
  Location loc;
  uint32_t control; // Selection/loop control

  BlockMergeInfo(Location location, uint32_t control)
      : mergeBlock(nullptr), continueBlock(nullptr), loc(location),
        control(control) {}
  BlockMergeInfo(Location location, uint32_t control, Block *m,
                 Block *c = nullptr)
      : mergeBlock(m), continueBlock(c), loc(location), control(control) {}
};

/// A struct for containing OpLine instruction information.
struct DebugLine {
  uint32_t fileID;
  uint32_t line;
  uint32_t column;
};

/// Map from a selection/loop's header block to its merge (and continue) target.
using BlockMergeInfoMap = DenseMap<Block *, BlockMergeInfo>;

/// A "deferred struct type" is a struct type with one or more member types not
/// known when the Deserializer first encounters the struct. This happens, for
/// example, with recursive structs where a pointer to the struct type is
/// forward declared through OpTypeForwardPointer in the SPIR-V module before
/// the struct declaration; the actual pointer to struct type should be defined
/// later through an OpTypePointer. For example, the following C struct:
///
/// struct A {
///   A* next;
/// };
///
/// would be represented in the SPIR-V module as:
///
/// OpName %A "A"
/// OpTypeForwardPointer %APtr Generic
/// %A = OpTypeStruct %APtr
/// %APtr = OpTypePointer Generic %A
///
/// This means that the spirv::StructType cannot be fully constructed directly
/// when the Deserializer encounters it. Instead we create a
/// DeferredStructTypeInfo that contains all the information we know about the
/// spirv::StructType. Once all forward references for the struct are resolved,
/// the struct's body is set with all member info.
struct DeferredStructTypeInfo {
  spirv::StructType deferredStructType;

  // A list of all unresolved member types for the struct. First element of each
  // item is operand ID, second element is member index in the struct.
  SmallVector<std::pair<uint32_t, unsigned>, 0> unresolvedMemberTypes;

  // The list of member types. For unresolved members, this list contains
  // place-holder empty types that will be updated later.
  SmallVector<Type, 4> memberTypes;
  SmallVector<spirv::StructType::OffsetInfo, 0> offsetInfo;
  SmallVector<spirv::StructType::MemberDecorationInfo, 0> memberDecorationsInfo;
};

/// A struct that collects the info needed to materialize/emit a
/// SpecConstantOperation op.
struct SpecConstOperationMaterializationInfo {
  spirv::Opcode enclodesOpcode;
  uint32_t resultTypeID;
  SmallVector<uint32_t> enclosedOpOperands;
};

//===----------------------------------------------------------------------===//
// Deserializer Declaration
//===----------------------------------------------------------------------===//

/// A SPIR-V module serializer.
///
/// A SPIR-V binary module is a single linear stream of instructions; each
/// instruction is composed of 32-bit words. The first word of an instruction
/// records the total number of words of that instruction using the 16
/// higher-order bits. So this deserializer uses that to get instruction
/// boundary and parse instructions and build a SPIR-V ModuleOp gradually.
///
// TODO: clean up created ops on errors
class Deserializer {
public:
  /// Creates a deserializer for the given SPIR-V `binary` module.
  /// The SPIR-V ModuleOp will be created into `context.
  explicit Deserializer(ArrayRef<uint32_t> binary, MLIRContext *context);

  /// Deserializes the remembered SPIR-V binary module.
  LogicalResult deserialize();

  /// Collects the final SPIR-V ModuleOp.
  OwningOpRef<spirv::ModuleOp> collect();

private:
  //===--------------------------------------------------------------------===//
  // Module structure
  //===--------------------------------------------------------------------===//

  /// Initializes the `module` ModuleOp in this deserializer instance.
  OwningOpRef<spirv::ModuleOp> createModuleOp();

  /// Processes SPIR-V module header in `binary`.
  LogicalResult processHeader();

  /// Processes the SPIR-V OpCapability with `operands` and updates bookkeeping
  /// in the deserializer.
  LogicalResult processCapability(ArrayRef<uint32_t> operands);

  /// Processes the SPIR-V OpExtension with `operands` and updates bookkeeping
  /// in the deserializer.
  LogicalResult processExtension(ArrayRef<uint32_t> words);

  /// Processes the SPIR-V OpExtInstImport with `operands` and updates
  /// bookkeeping in the deserializer.
  LogicalResult processExtInstImport(ArrayRef<uint32_t> words);

  /// Attaches (version, capabilities, extensions) triple to `module` as an
  /// attribute.
  void attachVCETriple();

  /// Processes the SPIR-V OpMemoryModel with `operands` and updates `module`.
  LogicalResult processMemoryModel(ArrayRef<uint32_t> operands);

  /// Process SPIR-V OpName with `operands`.
  LogicalResult processName(ArrayRef<uint32_t> operands);

  /// Processes an OpDecorate instruction.
  LogicalResult processDecoration(ArrayRef<uint32_t> words);

  // Processes an OpMemberDecorate instruction.
  LogicalResult processMemberDecoration(ArrayRef<uint32_t> words);

  /// Processes an OpMemberName instruction.
  LogicalResult processMemberName(ArrayRef<uint32_t> words);

  /// Gets the function op associated with a result <id> of OpFunction.
  spirv::FuncOp getFunction(uint32_t id) { return funcMap.lookup(id); }

  /// Processes the SPIR-V function at the current `offset` into `binary`.
  /// The operands to the OpFunction instruction is passed in as ``operands`.
  /// This method processes each instruction inside the function and dispatches
  /// them to their handler method accordingly.
  LogicalResult processFunction(ArrayRef<uint32_t> operands);

  /// Processes OpFunctionEnd and finalizes function. This wires up block
  /// argument created from OpPhi instructions and also structurizes control
  /// flow.
  LogicalResult processFunctionEnd(ArrayRef<uint32_t> operands);

  /// Gets the constant's attribute and type associated with the given <id>.
  std::optional<std::pair<Attribute, Type>> getConstant(uint32_t id);

  /// Gets the info needed to materialize the spec constant operation op
  /// associated with the given <id>.
  std::optional<SpecConstOperationMaterializationInfo>
  getSpecConstantOperation(uint32_t id);

  /// Gets the constant's integer attribute with the given <id>. Returns a
  /// null IntegerAttr if the given is not registered or does not correspond
  /// to an integer constant.
  IntegerAttr getConstantInt(uint32_t id);

  /// Returns a symbol to be used for the function name with the given
  /// result <id>. This tries to use the function's OpName if
  /// exists; otherwise creates one based on the <id>.
  std::string getFunctionSymbol(uint32_t id);

  /// Returns a symbol to be used for the specialization constant with the given
  /// result <id>. This tries to use the specialization constant's OpName if
  /// exists; otherwise creates one based on the <id>.
  std::string getSpecConstantSymbol(uint32_t id);

  /// Gets the specialization constant with the given result <id>.
  spirv::SpecConstantOp getSpecConstant(uint32_t id) {
    return specConstMap.lookup(id);
  }

  /// Gets the composite specialization constant with the given result <id>.
  spirv::SpecConstantCompositeOp getSpecConstantComposite(uint32_t id) {
    return specConstCompositeMap.lookup(id);
  }

  /// Creates a spirv::SpecConstantOp.
  spirv::SpecConstantOp createSpecConstant(Location loc, uint32_t resultID,
                                           TypedAttr defaultValue);

  /// Processes the OpVariable instructions at current `offset` into `binary`.
  /// It is expected that this method is used for variables that are to be
  /// defined at module scope and will be deserialized into a
  /// spirv.GlobalVariable instruction.
  LogicalResult processGlobalVariable(ArrayRef<uint32_t> operands);

  /// Gets the global variable associated with a result <id> of OpVariable.
  spirv::GlobalVariableOp getGlobalVariable(uint32_t id) {
    return globalVariableMap.lookup(id);
  }

  //===--------------------------------------------------------------------===//
  // Type
  //===--------------------------------------------------------------------===//

  /// Gets type for a given result <id>.
  Type getType(uint32_t id) { return typeMap.lookup(id); }

  /// Get the type associated with the result <id> of an OpUndef.
  Type getUndefType(uint32_t id) { return undefMap.lookup(id); }

  /// Returns true if the given `type` is for SPIR-V void type.
  bool isVoidType(Type type) const { return isa<NoneType>(type); }

  /// Processes a SPIR-V type instruction with given `opcode` and `operands` and
  /// registers the type into `module`.
  LogicalResult processType(spirv::Opcode opcode, ArrayRef<uint32_t> operands);

  LogicalResult processOpTypePointer(ArrayRef<uint32_t> operands);

  LogicalResult processArrayType(ArrayRef<uint32_t> operands);

  LogicalResult processCooperativeMatrixType(ArrayRef<uint32_t> operands);

  LogicalResult processFunctionType(ArrayRef<uint32_t> operands);

  LogicalResult processJointMatrixType(ArrayRef<uint32_t> operands);

  LogicalResult processImageType(ArrayRef<uint32_t> operands);

  LogicalResult processSampledImageType(ArrayRef<uint32_t> operands);

  LogicalResult processRuntimeArrayType(ArrayRef<uint32_t> operands);

  LogicalResult processStructType(ArrayRef<uint32_t> operands);

  LogicalResult processMatrixType(ArrayRef<uint32_t> operands);

  LogicalResult processTypeForwardPointer(ArrayRef<uint32_t> operands);

  //===--------------------------------------------------------------------===//
  // Constant
  //===--------------------------------------------------------------------===//

  /// Processes a SPIR-V Op{|Spec}Constant instruction with the given
  /// `operands`. `isSpec` indicates whether this is a specialization constant.
  LogicalResult processConstant(ArrayRef<uint32_t> operands, bool isSpec);

  /// Processes a SPIR-V Op{|Spec}Constant{True|False} instruction with the
  /// given `operands`. `isSpec` indicates whether this is a specialization
  /// constant.
  LogicalResult processConstantBool(bool isTrue, ArrayRef<uint32_t> operands,
                                    bool isSpec);

  /// Processes a SPIR-V OpConstantComposite instruction with the given
  /// `operands`.
  LogicalResult processConstantComposite(ArrayRef<uint32_t> operands);

  /// Processes a SPIR-V OpSpecConstantComposite instruction with the given
  /// `operands`.
  LogicalResult processSpecConstantComposite(ArrayRef<uint32_t> operands);

  /// Processes a SPIR-V OpSpecConstantOp instruction with the given
  /// `operands`.
  LogicalResult processSpecConstantOperation(ArrayRef<uint32_t> operands);

  /// Materializes/emits an OpSpecConstantOp instruction.
  Value materializeSpecConstantOperation(uint32_t resultID,
                                         spirv::Opcode enclosedOpcode,
                                         uint32_t resultTypeID,
                                         ArrayRef<uint32_t> enclosedOpOperands);

  /// Processes a SPIR-V OpConstantNull instruction with the given `operands`.
  LogicalResult processConstantNull(ArrayRef<uint32_t> operands);

  //===--------------------------------------------------------------------===//
  // Debug
  //===--------------------------------------------------------------------===//

  /// Discontinues any source-level location information that might be active
  /// from a previous OpLine instruction.
  void clearDebugLine();

  /// Creates a FileLineColLoc with the OpLine location information.
  Location createFileLineColLoc(OpBuilder opBuilder);

  /// Processes a SPIR-V OpLine instruction with the given `operands`.
  LogicalResult processDebugLine(ArrayRef<uint32_t> operands);

  /// Processes a SPIR-V OpString instruction with the given `operands`.
  LogicalResult processDebugString(ArrayRef<uint32_t> operands);

  //===--------------------------------------------------------------------===//
  // Control flow
  //===--------------------------------------------------------------------===//

  /// Returns the block for the given label <id>.
  Block *getBlock(uint32_t id) const { return blockMap.lookup(id); }

  // In SPIR-V, structured control flow is explicitly declared using merge
  // instructions (OpSelectionMerge and OpLoopMerge). In the SPIR-V dialect,
  // we use spirv.mlir.selection and spirv.mlir.loop to group structured control
  // flow. The deserializer need to turn structured control flow marked with
  // merge instructions into using spirv.mlir.selection/spirv.mlir.loop ops.
  //
  // Because structured control flow can nest and the basic block order have
  // flexibility, we cannot isolate a structured selection/loop without
  // deserializing all the blocks. So we use the following approach:
  //
  // 1. Deserialize all basic blocks in a function and create MLIR blocks for
  //    them into the function's region. In the meanwhile, keep a map between
  //    selection/loop header blocks to their corresponding merge (and continue)
  //    target blocks.
  // 2. For each selection/loop header block, recursively get all basic blocks
  //    reachable (except the merge block) and put them in a newly created
  //    spirv.mlir.selection/spirv.mlir.loop's region. Structured control flow
  //    guarantees that we enter and exit in structured ways and the construct
  //    is nestable.
  // 3. Put the new spirv.mlir.selection/spirv.mlir.loop op at the beginning of
  // the
  //    old merge block and redirect all branches to the old header block to the
  //    old merge block (which contains the spirv.mlir.selection/spirv.mlir.loop
  //    op now).

  /// For OpPhi instructions, we use block arguments to represent them. OpPhi
  /// encodes a list of (value, predecessor) pairs. At the time of handling the
  /// block containing an OpPhi instruction, the predecessor block might not be
  /// processed yet, also the value sent by it. So we need to defer handling
  /// the block argument from the predecessors. We use the following approach:
  ///
  /// 1. For each OpPhi instruction, add a block argument to the current block
  ///    in construction. Record the block argument in `valueMap` so its uses
  ///    can be resolved. For the list of (value, predecessor) pairs, update
  ///    `blockPhiInfo` for bookkeeping.
  /// 2. After processing all blocks, loop over `blockPhiInfo` to fix up each
  ///    block recorded there to create the proper block arguments on their
  ///    terminators.

  /// A data structure for containing a SPIR-V block's phi info. It will be
  /// represented as block argument in SPIR-V dialect.
  using BlockPhiInfo =
      SmallVector<uint32_t, 2>; // The result <id> of the values sent

  /// Gets or creates the block corresponding to the given label <id>. The newly
  /// created block will always be placed at the end of the current function.
  Block *getOrCreateBlock(uint32_t id);

  LogicalResult processBranch(ArrayRef<uint32_t> operands);

  LogicalResult processBranchConditional(ArrayRef<uint32_t> operands);

  /// Processes a SPIR-V OpLabel instruction with the given `operands`.
  LogicalResult processLabel(ArrayRef<uint32_t> operands);

  /// Processes a SPIR-V OpSelectionMerge instruction with the given `operands`.
  LogicalResult processSelectionMerge(ArrayRef<uint32_t> operands);

  /// Processes a SPIR-V OpLoopMerge instruction with the given `operands`.
  LogicalResult processLoopMerge(ArrayRef<uint32_t> operands);

  /// Processes a SPIR-V OpPhi instruction with the given `operands`.
  LogicalResult processPhi(ArrayRef<uint32_t> operands);

  /// Creates block arguments on predecessors previously recorded when handling
  /// OpPhi instructions.
  LogicalResult wireUpBlockArgument();

  /// Extracts blocks belonging to a structured selection/loop into a
  /// spirv.mlir.selection/spirv.mlir.loop op. This method iterates until all
  /// blocks declared as selection/loop headers are handled.
  LogicalResult structurizeControlFlow();

  //===--------------------------------------------------------------------===//
  // Instruction
  //===--------------------------------------------------------------------===//

  /// Get the Value associated with a result <id>.
  ///
  /// This method materializes normal constants and inserts "casting" ops
  /// (`spirv.mlir.addressof` and `spirv.mlir.referenceof`) to turn an symbol
  /// into a SSA value for handling uses of module scope constants/variables in
  /// functions.
  Value getValue(uint32_t id);

  /// Slices the first instruction out of `binary` and returns its opcode and
  /// operands via `opcode` and `operands` respectively. Returns failure if
  /// there is no more remaining instructions (`expectedOpcode` will be used to
  /// compose the error message) or the next instruction is malformed.
  LogicalResult
  sliceInstruction(spirv::Opcode &opcode, ArrayRef<uint32_t> &operands,
                   std::optional<spirv::Opcode> expectedOpcode = std::nullopt);

  /// Processes a SPIR-V instruction with the given `opcode` and `operands`.
  /// This method is the main entrance for handling SPIR-V instruction; it
  /// checks the instruction opcode and dispatches to the corresponding handler.
  /// Processing of Some instructions (like OpEntryPoint and OpExecutionMode)
  /// might need to be deferred, since they contain forward references to <id>s
  /// in the deserialized binary, but module in SPIR-V dialect expects these to
  /// be ssa-uses.
  LogicalResult processInstruction(spirv::Opcode opcode,
                                   ArrayRef<uint32_t> operands,
                                   bool deferInstructions = true);

  /// Processes a SPIR-V instruction from the given `operands`. It should
  /// deserialize into an op with the given `opName` and `numOperands`.
  /// This method is a generic one for dispatching any SPIR-V ops without
  /// variadic operands and attributes in TableGen definitions.
  LogicalResult processOpWithoutGrammarAttr(ArrayRef<uint32_t> words,
                                            StringRef opName, bool hasResult,
                                            unsigned numOperands);

  /// Processes a OpUndef instruction. Adds a spirv.Undef operation at the
  /// current insertion point.
  LogicalResult processUndef(ArrayRef<uint32_t> operands);

  /// Method to dispatch to the specialized deserialization function for an
  /// operation in SPIR-V dialect that is a mirror of an instruction in the
  /// SPIR-V spec. This is auto-generated from ODS. Dispatch is handled for
  /// all operations in SPIR-V dialect that have hasOpcode == 1.
  LogicalResult dispatchToAutogenDeserialization(spirv::Opcode opcode,
                                                 ArrayRef<uint32_t> words);

  /// Processes a SPIR-V OpExtInst with given `operands`. This slices the
  /// entries of `operands` that specify the extended instruction set <id> and
  /// the instruction opcode. The op deserializer is then invoked using the
  /// other entries.
  LogicalResult processExtInst(ArrayRef<uint32_t> operands);

  /// Dispatches the deserialization of extended instruction set operation based
  /// on the extended instruction set name, and instruction opcode. This is
  /// autogenerated from ODS.
  LogicalResult
  dispatchToExtensionSetAutogenDeserialization(StringRef extensionSetName,
                                               uint32_t instructionID,
                                               ArrayRef<uint32_t> words);

  /// Method to deserialize an operation in the SPIR-V dialect that is a mirror
  /// of an instruction in the SPIR-V spec. This is auto generated if hasOpcode
  /// == 1 and autogenSerialization == 1 in ODS.
  template <typename OpTy>
  LogicalResult processOp(ArrayRef<uint32_t> words) {
    return emitError(unknownLoc, "unsupported deserialization for ")
           << OpTy::getOperationName() << " op";
  }

private:
  /// The SPIR-V binary module.
  ArrayRef<uint32_t> binary;

  /// Contains the data of the OpLine instruction which precedes the current
  /// processing instruction.
  std::optional<DebugLine> debugLine;

  /// The current word offset into the binary module.
  unsigned curOffset = 0;

  /// MLIRContext to create SPIR-V ModuleOp into.
  MLIRContext *context;

  // TODO: create Location subclass for binary blob
  Location unknownLoc;

  /// The SPIR-V ModuleOp.
  OwningOpRef<spirv::ModuleOp> module;

  /// The current function under construction.
  std::optional<spirv::FuncOp> curFunction;

  /// The current block under construction.
  Block *curBlock = nullptr;

  OpBuilder opBuilder;

  spirv::Version version = spirv::Version::V_1_0;

  /// The list of capabilities used by the module.
  llvm::SmallSetVector<spirv::Capability, 4> capabilities;

  /// The list of extensions used by the module.
  llvm::SmallSetVector<spirv::Extension, 2> extensions;

  // Result <id> to type mapping.
  DenseMap<uint32_t, Type> typeMap;

  // Result <id> to constant attribute and type mapping.
  ///
  /// In the SPIR-V binary format, all constants are placed in the module and
  /// shared by instructions at module level and in subsequent functions. But in
  /// the SPIR-V dialect, we materialize the constant to where it's used in the
  /// function. So when seeing a constant instruction in the binary format, we
  /// don't immediately emit a constant op into the module, we keep its value
  /// (and type) here. Later when it's used, we materialize the constant.
  DenseMap<uint32_t, std::pair<Attribute, Type>> constantMap;

  // Result <id> to spec constant mapping.
  DenseMap<uint32_t, spirv::SpecConstantOp> specConstMap;

  // Result <id> to composite spec constant mapping.
  DenseMap<uint32_t, spirv::SpecConstantCompositeOp> specConstCompositeMap;

  /// Result <id> to info needed to materialize an OpSpecConstantOp
  /// mapping.
  DenseMap<uint32_t, SpecConstOperationMaterializationInfo>
      specConstOperationMap;

  // Result <id> to variable mapping.
  DenseMap<uint32_t, spirv::GlobalVariableOp> globalVariableMap;

  // Result <id> to function mapping.
  DenseMap<uint32_t, spirv::FuncOp> funcMap;

  // Result <id> to block mapping.
  DenseMap<uint32_t, Block *> blockMap;

  // Header block to its merge (and continue) target mapping.
  BlockMergeInfoMap blockMergeInfo;

  // For each pair of {predecessor, target} blocks, maps the pair of blocks to
  // the list of phi arguments passed from predecessor to target.
  DenseMap<std::pair<Block * /*predecessor*/, Block * /*target*/>, BlockPhiInfo>
      blockPhiInfo;

  // Result <id> to value mapping.
  DenseMap<uint32_t, Value> valueMap;

  // Mapping from result <id> to undef value of a type.
  DenseMap<uint32_t, Type> undefMap;

  // Result <id> to name mapping.
  DenseMap<uint32_t, StringRef> nameMap;

  // Result <id> to debug info mapping.
  DenseMap<uint32_t, StringRef> debugInfoMap;

  // Result <id> to decorations mapping.
  DenseMap<uint32_t, NamedAttrList> decorations;

  // Result <id> to type decorations.
  DenseMap<uint32_t, uint32_t> typeDecorations;

  // Result <id> to member decorations.
  // decorated-struct-type-<id> ->
  //    (struct-member-index -> (decoration -> decoration-operands))
  DenseMap<uint32_t,
           DenseMap<uint32_t, DenseMap<spirv::Decoration, ArrayRef<uint32_t>>>>
      memberDecorationMap;

  // Result <id> to member name.
  // struct-type-<id> -> (struct-member-index -> name)
  DenseMap<uint32_t, DenseMap<uint32_t, StringRef>> memberNameMap;

  // Result <id> to extended instruction set name.
  DenseMap<uint32_t, StringRef> extendedInstSets;

  // List of instructions that are processed in a deferred fashion (after an
  // initial processing of the entire binary). Some operations like
  // OpEntryPoint, and OpExecutionMode use forward references to function
  // <id>s. In SPIR-V dialect the corresponding operations (spirv.EntryPoint and
  // spirv.ExecutionMode) need these references resolved. So these instructions
  // are deserialized and stored for processing once the entire binary is
  // processed.
  SmallVector<std::pair<spirv::Opcode, ArrayRef<uint32_t>>, 4>
      deferredInstructions;

  /// A list of IDs for all types forward-declared through OpTypeForwardPointer
  /// instructions.
  SetVector<uint32_t> typeForwardPointerIDs;

  /// A list of all structs which have unresolved member types.
  SmallVector<DeferredStructTypeInfo, 0> deferredStructTypesInfos;

#ifndef NDEBUG
  /// A logger used to emit information during the deserialzation process.
  llvm::ScopedPrinter logger;
#endif
};

} // namespace spirv
} // namespace mlir

#endif // MLIR_TARGET_SPIRV_DESERIALIZER_H