1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
|
//===- CSE.cpp - Common Sub-expression Elimination ------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This transformation pass performs a simple common sub-expression elimination
// algorithm on operations within a region.
//
//===----------------------------------------------------------------------===//
#include "mlir/Transforms/CSE.h"
#include "mlir/IR/Dominance.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Interfaces/SideEffectInterfaces.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Transforms/Passes.h"
#include "llvm/ADT/DenseMapInfo.h"
#include "llvm/ADT/Hashing.h"
#include "llvm/ADT/ScopedHashTable.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/RecyclingAllocator.h"
#include <deque>
namespace mlir {
#define GEN_PASS_DEF_CSE
#include "mlir/Transforms/Passes.h.inc"
} // namespace mlir
using namespace mlir;
namespace {
struct SimpleOperationInfo : public llvm::DenseMapInfo<Operation *> {
static unsigned getHashValue(const Operation *opC) {
return OperationEquivalence::computeHash(
const_cast<Operation *>(opC),
/*hashOperands=*/OperationEquivalence::directHashValue,
/*hashResults=*/OperationEquivalence::ignoreHashValue,
OperationEquivalence::IgnoreLocations);
}
static bool isEqual(const Operation *lhsC, const Operation *rhsC) {
auto *lhs = const_cast<Operation *>(lhsC);
auto *rhs = const_cast<Operation *>(rhsC);
if (lhs == rhs)
return true;
if (lhs == getTombstoneKey() || lhs == getEmptyKey() ||
rhs == getTombstoneKey() || rhs == getEmptyKey())
return false;
return OperationEquivalence::isEquivalentTo(
const_cast<Operation *>(lhsC), const_cast<Operation *>(rhsC),
OperationEquivalence::IgnoreLocations);
}
};
} // namespace
namespace {
/// Simple common sub-expression elimination.
class CSEDriver {
public:
CSEDriver(RewriterBase &rewriter, DominanceInfo *domInfo)
: rewriter(rewriter), domInfo(domInfo) {}
/// Simplify all operations within the given op.
void simplify(Operation *op, bool *changed = nullptr);
int64_t getNumCSE() const { return numCSE; }
int64_t getNumDCE() const { return numDCE; }
private:
/// Shared implementation of operation elimination and scoped map definitions.
using AllocatorTy = llvm::RecyclingAllocator<
llvm::BumpPtrAllocator,
llvm::ScopedHashTableVal<Operation *, Operation *>>;
using ScopedMapTy = llvm::ScopedHashTable<Operation *, Operation *,
SimpleOperationInfo, AllocatorTy>;
/// Cache holding MemoryEffects information between two operations. The first
/// operation is stored has the key. The second operation is stored inside a
/// pair in the value. The pair also hold the MemoryEffects between those
/// two operations. If the MemoryEffects is nullptr then we assume there is
/// no operation with MemoryEffects::Write between the two operations.
using MemEffectsCache =
DenseMap<Operation *, std::pair<Operation *, MemoryEffects::Effect *>>;
/// Represents a single entry in the depth first traversal of a CFG.
struct CFGStackNode {
CFGStackNode(ScopedMapTy &knownValues, DominanceInfoNode *node)
: scope(knownValues), node(node), childIterator(node->begin()) {}
/// Scope for the known values.
ScopedMapTy::ScopeTy scope;
DominanceInfoNode *node;
DominanceInfoNode::const_iterator childIterator;
/// If this node has been fully processed yet or not.
bool processed = false;
};
/// Attempt to eliminate a redundant operation. Returns success if the
/// operation was marked for removal, failure otherwise.
LogicalResult simplifyOperation(ScopedMapTy &knownValues, Operation *op,
bool hasSSADominance);
void simplifyBlock(ScopedMapTy &knownValues, Block *bb, bool hasSSADominance);
void simplifyRegion(ScopedMapTy &knownValues, Region ®ion);
void replaceUsesAndDelete(ScopedMapTy &knownValues, Operation *op,
Operation *existing, bool hasSSADominance);
/// Check if there is side-effecting operations other than the given effect
/// between the two operations.
bool hasOtherSideEffectingOpInBetween(Operation *fromOp, Operation *toOp);
/// A rewriter for modifying the IR.
RewriterBase &rewriter;
/// Operations marked as dead and to be erased.
std::vector<Operation *> opsToErase;
DominanceInfo *domInfo = nullptr;
MemEffectsCache memEffectsCache;
// Various statistics.
int64_t numCSE = 0;
int64_t numDCE = 0;
};
} // namespace
void CSEDriver::replaceUsesAndDelete(ScopedMapTy &knownValues, Operation *op,
Operation *existing,
bool hasSSADominance) {
// If we find one then replace all uses of the current operation with the
// existing one and mark it for deletion. We can only replace an operand in
// an operation if it has not been visited yet.
if (hasSSADominance) {
// If the region has SSA dominance, then we are guaranteed to have not
// visited any use of the current operation.
if (auto *rewriteListener =
dyn_cast_if_present<RewriterBase::Listener>(rewriter.getListener()))
rewriteListener->notifyOperationReplaced(op, existing);
// Replace all uses, but do not remote the operation yet. This does not
// notify the listener because the original op is not erased.
rewriter.replaceAllUsesWith(op->getResults(), existing->getResults());
opsToErase.push_back(op);
} else {
// When the region does not have SSA dominance, we need to check if we
// have visited a use before replacing any use.
auto wasVisited = [&](OpOperand &operand) {
return !knownValues.count(operand.getOwner());
};
if (auto *rewriteListener =
dyn_cast_if_present<RewriterBase::Listener>(rewriter.getListener()))
for (Value v : op->getResults())
if (all_of(v.getUses(), wasVisited))
rewriteListener->notifyOperationReplaced(op, existing);
// Replace all uses, but do not remote the operation yet. This does not
// notify the listener because the original op is not erased.
rewriter.replaceUsesWithIf(op->getResults(), existing->getResults(),
wasVisited);
// There may be some remaining uses of the operation.
if (op->use_empty())
opsToErase.push_back(op);
}
// If the existing operation has an unknown location and the current
// operation doesn't, then set the existing op's location to that of the
// current op.
if (isa<UnknownLoc>(existing->getLoc()) && !isa<UnknownLoc>(op->getLoc()))
existing->setLoc(op->getLoc());
++numCSE;
}
bool CSEDriver::hasOtherSideEffectingOpInBetween(Operation *fromOp,
Operation *toOp) {
assert(fromOp->getBlock() == toOp->getBlock());
assert(
isa<MemoryEffectOpInterface>(fromOp) &&
cast<MemoryEffectOpInterface>(fromOp).hasEffect<MemoryEffects::Read>() &&
isa<MemoryEffectOpInterface>(toOp) &&
cast<MemoryEffectOpInterface>(toOp).hasEffect<MemoryEffects::Read>());
Operation *nextOp = fromOp->getNextNode();
auto result =
memEffectsCache.try_emplace(fromOp, std::make_pair(fromOp, nullptr));
if (result.second) {
auto memEffectsCachePair = result.first->second;
if (memEffectsCachePair.second == nullptr) {
// No MemoryEffects::Write has been detected until the cached operation.
// Continue looking from the cached operation to toOp.
nextOp = memEffectsCachePair.first;
} else {
// MemoryEffects::Write has been detected before so there is no need to
// check further.
return true;
}
}
while (nextOp && nextOp != toOp) {
auto nextOpMemEffects = dyn_cast<MemoryEffectOpInterface>(nextOp);
// TODO: Do we need to handle other effects generically?
// If the operation does not implement the MemoryEffectOpInterface we
// conservatively assumes it writes.
if ((nextOpMemEffects &&
nextOpMemEffects.hasEffect<MemoryEffects::Write>()) ||
!nextOpMemEffects) {
result.first->second =
std::make_pair(nextOp, MemoryEffects::Write::get());
return true;
}
nextOp = nextOp->getNextNode();
}
result.first->second = std::make_pair(toOp, nullptr);
return false;
}
/// Attempt to eliminate a redundant operation.
LogicalResult CSEDriver::simplifyOperation(ScopedMapTy &knownValues,
Operation *op,
bool hasSSADominance) {
// Don't simplify terminator operations.
if (op->hasTrait<OpTrait::IsTerminator>())
return failure();
// If the operation is already trivially dead just add it to the erase list.
if (isOpTriviallyDead(op)) {
opsToErase.push_back(op);
++numDCE;
return success();
}
// Don't simplify operations with regions that have multiple blocks.
// TODO: We need additional tests to verify that we handle such IR correctly.
if (!llvm::all_of(op->getRegions(), [](Region &r) {
return r.getBlocks().empty() || llvm::hasSingleElement(r.getBlocks());
}))
return failure();
// Some simple use case of operation with memory side-effect are dealt with
// here. Operations with no side-effect are done after.
if (!isMemoryEffectFree(op)) {
auto memEffects = dyn_cast<MemoryEffectOpInterface>(op);
// TODO: Only basic use case for operations with MemoryEffects::Read can be
// eleminated now. More work needs to be done for more complicated patterns
// and other side-effects.
if (!memEffects || !memEffects.onlyHasEffect<MemoryEffects::Read>())
return failure();
// Look for an existing definition for the operation.
if (auto *existing = knownValues.lookup(op)) {
if (existing->getBlock() == op->getBlock() &&
!hasOtherSideEffectingOpInBetween(existing, op)) {
// The operation that can be deleted has been reach with no
// side-effecting operations in between the existing operation and
// this one so we can remove the duplicate.
replaceUsesAndDelete(knownValues, op, existing, hasSSADominance);
return success();
}
}
knownValues.insert(op, op);
return failure();
}
// Look for an existing definition for the operation.
if (auto *existing = knownValues.lookup(op)) {
replaceUsesAndDelete(knownValues, op, existing, hasSSADominance);
++numCSE;
return success();
}
// Otherwise, we add this operation to the known values map.
knownValues.insert(op, op);
return failure();
}
void CSEDriver::simplifyBlock(ScopedMapTy &knownValues, Block *bb,
bool hasSSADominance) {
for (auto &op : *bb) {
// Most operations don't have regions, so fast path that case.
if (op.getNumRegions() != 0) {
// If this operation is isolated above, we can't process nested regions
// with the given 'knownValues' map. This would cause the insertion of
// implicit captures in explicit capture only regions.
if (op.mightHaveTrait<OpTrait::IsIsolatedFromAbove>()) {
ScopedMapTy nestedKnownValues;
for (auto ®ion : op.getRegions())
simplifyRegion(nestedKnownValues, region);
} else {
// Otherwise, process nested regions normally.
for (auto ®ion : op.getRegions())
simplifyRegion(knownValues, region);
}
}
// If the operation is simplified, we don't process any held regions.
if (succeeded(simplifyOperation(knownValues, &op, hasSSADominance)))
continue;
}
// Clear the MemoryEffects cache since its usage is by block only.
memEffectsCache.clear();
}
void CSEDriver::simplifyRegion(ScopedMapTy &knownValues, Region ®ion) {
// If the region is empty there is nothing to do.
if (region.empty())
return;
bool hasSSADominance = domInfo->hasSSADominance(®ion);
// If the region only contains one block, then simplify it directly.
if (region.hasOneBlock()) {
ScopedMapTy::ScopeTy scope(knownValues);
simplifyBlock(knownValues, ®ion.front(), hasSSADominance);
return;
}
// If the region does not have dominanceInfo, then skip it.
// TODO: Regions without SSA dominance should define a different
// traversal order which is appropriate and can be used here.
if (!hasSSADominance)
return;
// Note, deque is being used here because there was significant performance
// gains over vector when the container becomes very large due to the
// specific access patterns. If/when these performance issues are no
// longer a problem we can change this to vector. For more information see
// the llvm mailing list discussion on this:
// http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20120116/135228.html
std::deque<std::unique_ptr<CFGStackNode>> stack;
// Process the nodes of the dom tree for this region.
stack.emplace_back(std::make_unique<CFGStackNode>(
knownValues, domInfo->getRootNode(®ion)));
while (!stack.empty()) {
auto ¤tNode = stack.back();
// Check to see if we need to process this node.
if (!currentNode->processed) {
currentNode->processed = true;
simplifyBlock(knownValues, currentNode->node->getBlock(),
hasSSADominance);
}
// Otherwise, check to see if we need to process a child node.
if (currentNode->childIterator != currentNode->node->end()) {
auto *childNode = *(currentNode->childIterator++);
stack.emplace_back(
std::make_unique<CFGStackNode>(knownValues, childNode));
} else {
// Finally, if the node and all of its children have been processed
// then we delete the node.
stack.pop_back();
}
}
}
void CSEDriver::simplify(Operation *op, bool *changed) {
/// Simplify all regions.
ScopedMapTy knownValues;
for (auto ®ion : op->getRegions())
simplifyRegion(knownValues, region);
/// Erase any operations that were marked as dead during simplification.
for (auto *op : opsToErase)
rewriter.eraseOp(op);
if (changed)
*changed = !opsToErase.empty();
// Note: CSE does currently not remove ops with regions, so DominanceInfo
// does not have to be invalidated.
}
void mlir::eliminateCommonSubExpressions(RewriterBase &rewriter,
DominanceInfo &domInfo, Operation *op,
bool *changed) {
CSEDriver driver(rewriter, &domInfo);
driver.simplify(op, changed);
}
namespace {
/// CSE pass.
struct CSE : public impl::CSEBase<CSE> {
void runOnOperation() override;
};
} // namespace
void CSE::runOnOperation() {
// Simplify the IR.
IRRewriter rewriter(&getContext());
CSEDriver driver(rewriter, &getAnalysis<DominanceInfo>());
bool changed = false;
driver.simplify(getOperation(), &changed);
// Set statistics.
numCSE = driver.getNumCSE();
numDCE = driver.getNumDCE();
// If there was no change to the IR, we mark all analyses as preserved.
if (!changed)
return markAllAnalysesPreserved();
// We currently don't remove region operations, so mark dominance as
// preserved.
markAnalysesPreserved<DominanceInfo, PostDominanceInfo>();
}
std::unique_ptr<Pass> mlir::createCSEPass() { return std::make_unique<CSE>(); }
|