1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
|
//===-- SROA.cpp - Scalar Replacement Of Aggregates -------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Transforms/SROA.h"
#include "mlir/Analysis/SliceAnalysis.h"
#include "mlir/Interfaces/MemorySlotInterfaces.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include "mlir/Transforms/Passes.h"
namespace mlir {
#define GEN_PASS_DEF_SROA
#include "mlir/Transforms/Passes.h.inc"
} // namespace mlir
#define DEBUG_TYPE "sroa"
using namespace mlir;
namespace {
/// Information computed by destructurable memory slot analysis used to perform
/// actual destructuring of the slot. This struct is only constructed if
/// destructuring is possible, and contains the necessary data to perform it.
struct MemorySlotDestructuringInfo {
/// Set of the indices that are actually used when accessing the subelements.
SmallPtrSet<Attribute, 8> usedIndices;
/// Blocking uses of a given user of the memory slot that must be eliminated.
DenseMap<Operation *, SmallPtrSet<OpOperand *, 4>> userToBlockingUses;
/// List of potentially indirect accessors of the memory slot that need
/// rewiring.
SmallVector<DestructurableAccessorOpInterface> accessors;
};
} // namespace
/// Computes information for slot destructuring. This will compute whether this
/// slot can be destructured and data to perform the destructuring. Returns
/// nothing if the slot cannot be destructured or if there is no useful work to
/// be done.
static std::optional<MemorySlotDestructuringInfo>
computeDestructuringInfo(DestructurableMemorySlot &slot) {
assert(isa<DestructurableTypeInterface>(slot.elemType));
if (slot.ptr.use_empty())
return {};
MemorySlotDestructuringInfo info;
SmallVector<MemorySlot> usedSafelyWorklist;
auto scheduleAsBlockingUse = [&](OpOperand &use) {
SmallPtrSetImpl<OpOperand *> &blockingUses =
info.userToBlockingUses.getOrInsertDefault(use.getOwner());
blockingUses.insert(&use);
};
// Initialize the analysis with the immediate users of the slot.
for (OpOperand &use : slot.ptr.getUses()) {
if (auto accessor =
dyn_cast<DestructurableAccessorOpInterface>(use.getOwner())) {
if (accessor.canRewire(slot, info.usedIndices, usedSafelyWorklist)) {
info.accessors.push_back(accessor);
continue;
}
}
// If it cannot be shown that the operation uses the slot safely, maybe it
// can be promoted out of using the slot?
scheduleAsBlockingUse(use);
}
SmallPtrSet<OpOperand *, 16> visited;
while (!usedSafelyWorklist.empty()) {
MemorySlot mustBeUsedSafely = usedSafelyWorklist.pop_back_val();
for (OpOperand &subslotUse : mustBeUsedSafely.ptr.getUses()) {
if (!visited.insert(&subslotUse).second)
continue;
Operation *subslotUser = subslotUse.getOwner();
if (auto memOp = dyn_cast<SafeMemorySlotAccessOpInterface>(subslotUser))
if (succeeded(memOp.ensureOnlySafeAccesses(mustBeUsedSafely,
usedSafelyWorklist)))
continue;
// If it cannot be shown that the operation uses the slot safely, maybe it
// can be promoted out of using the slot?
scheduleAsBlockingUse(subslotUse);
}
}
SetVector<Operation *> forwardSlice;
mlir::getForwardSlice(slot.ptr, &forwardSlice);
for (Operation *user : forwardSlice) {
// If the next operation has no blocking uses, everything is fine.
if (!info.userToBlockingUses.contains(user))
continue;
SmallPtrSet<OpOperand *, 4> &blockingUses = info.userToBlockingUses[user];
auto promotable = dyn_cast<PromotableOpInterface>(user);
// An operation that has blocking uses must be promoted. If it is not
// promotable, destructuring must fail.
if (!promotable)
return {};
SmallVector<OpOperand *> newBlockingUses;
// If the operation decides it cannot deal with removing the blocking uses,
// destructuring must fail.
if (!promotable.canUsesBeRemoved(blockingUses, newBlockingUses))
return {};
// Then, register any new blocking uses for coming operations.
for (OpOperand *blockingUse : newBlockingUses) {
assert(llvm::is_contained(user->getResults(), blockingUse->get()));
SmallPtrSetImpl<OpOperand *> &newUserBlockingUseSet =
info.userToBlockingUses.getOrInsertDefault(blockingUse->getOwner());
newUserBlockingUseSet.insert(blockingUse);
}
}
return info;
}
/// Performs the destructuring of a destructible slot given associated
/// destructuring information. The provided slot will be destructured in
/// subslots as specified by its allocator.
static void destructureSlot(DestructurableMemorySlot &slot,
DestructurableAllocationOpInterface allocator,
RewriterBase &rewriter,
MemorySlotDestructuringInfo &info,
const SROAStatistics &statistics) {
RewriterBase::InsertionGuard guard(rewriter);
rewriter.setInsertionPointToStart(slot.ptr.getParentBlock());
DenseMap<Attribute, MemorySlot> subslots =
allocator.destructure(slot, info.usedIndices, rewriter);
if (statistics.slotsWithMemoryBenefit &&
slot.elementPtrs.size() != info.usedIndices.size())
(*statistics.slotsWithMemoryBenefit)++;
if (statistics.maxSubelementAmount)
statistics.maxSubelementAmount->updateMax(slot.elementPtrs.size());
SetVector<Operation *> usersToRewire;
for (Operation *user : llvm::make_first_range(info.userToBlockingUses))
usersToRewire.insert(user);
for (DestructurableAccessorOpInterface accessor : info.accessors)
usersToRewire.insert(accessor);
usersToRewire = mlir::topologicalSort(usersToRewire);
llvm::SmallVector<Operation *> toErase;
for (Operation *toRewire : llvm::reverse(usersToRewire)) {
rewriter.setInsertionPointAfter(toRewire);
if (auto accessor = dyn_cast<DestructurableAccessorOpInterface>(toRewire)) {
if (accessor.rewire(slot, subslots, rewriter) == DeletionKind::Delete)
toErase.push_back(accessor);
continue;
}
auto promotable = cast<PromotableOpInterface>(toRewire);
if (promotable.removeBlockingUses(info.userToBlockingUses[promotable],
rewriter) == DeletionKind::Delete)
toErase.push_back(promotable);
}
for (Operation *toEraseOp : toErase)
rewriter.eraseOp(toEraseOp);
assert(slot.ptr.use_empty() && "after destructuring, the original slot "
"pointer should no longer be used");
LLVM_DEBUG(llvm::dbgs() << "[sroa] Destructured memory slot: " << slot.ptr
<< "\n");
if (statistics.destructuredAmount)
(*statistics.destructuredAmount)++;
allocator.handleDestructuringComplete(slot, rewriter);
}
LogicalResult mlir::tryToDestructureMemorySlots(
ArrayRef<DestructurableAllocationOpInterface> allocators,
RewriterBase &rewriter, SROAStatistics statistics) {
bool destructuredAny = false;
for (DestructurableAllocationOpInterface allocator : allocators) {
for (DestructurableMemorySlot slot : allocator.getDestructurableSlots()) {
std::optional<MemorySlotDestructuringInfo> info =
computeDestructuringInfo(slot);
if (!info)
continue;
destructureSlot(slot, allocator, rewriter, *info, statistics);
destructuredAny = true;
}
}
return success(destructuredAny);
}
LogicalResult
SROAPattern::matchAndRewrite(DestructurableAllocationOpInterface allocator,
PatternRewriter &rewriter) const {
hasBoundedRewriteRecursion();
return tryToDestructureMemorySlots({allocator}, rewriter, statistics);
}
namespace {
struct SROA : public impl::SROABase<SROA> {
using impl::SROABase<SROA>::SROABase;
void runOnOperation() override {
Operation *scopeOp = getOperation();
SROAStatistics statistics{&destructuredAmount, &slotsWithMemoryBenefit,
&maxSubelementAmount};
RewritePatternSet rewritePatterns(&getContext());
rewritePatterns.add<SROAPattern>(&getContext(), statistics);
FrozenRewritePatternSet frozen(std::move(rewritePatterns));
if (failed(applyPatternsAndFoldGreedily(scopeOp, frozen)))
signalPassFailure();
}
};
} // namespace
|