1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
|
//===- CommutativityUtils.cpp - Commutativity utilities ---------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements a commutativity utility pattern and a function to
// populate this pattern. The function is intended to be used inside passes to
// simplify the matching of commutative operations by fixing the order of their
// operands.
//
//===----------------------------------------------------------------------===//
#include "mlir/Transforms/CommutativityUtils.h"
#include <queue>
using namespace mlir;
/// The possible "types" of ancestors. Here, an ancestor is an op or a block
/// argument present in the backward slice of a value.
enum AncestorType {
/// Pertains to a block argument.
BLOCK_ARGUMENT,
/// Pertains to a non-constant-like op.
NON_CONSTANT_OP,
/// Pertains to a constant-like op.
CONSTANT_OP
};
/// Stores the "key" associated with an ancestor.
struct AncestorKey {
/// Holds `BLOCK_ARGUMENT`, `NON_CONSTANT_OP`, or `CONSTANT_OP`, depending on
/// the ancestor.
AncestorType type;
/// Holds the op name of the ancestor if its `type` is `NON_CONSTANT_OP` or
/// `CONSTANT_OP`. Else, holds "".
StringRef opName;
/// Constructor for `AncestorKey`.
AncestorKey(Operation *op) {
if (!op) {
type = BLOCK_ARGUMENT;
} else {
type =
op->hasTrait<OpTrait::ConstantLike>() ? CONSTANT_OP : NON_CONSTANT_OP;
opName = op->getName().getStringRef();
}
}
/// Overloaded operator `<` for `AncestorKey`.
///
/// AncestorKeys of type `BLOCK_ARGUMENT` are considered the smallest, those
/// of type `CONSTANT_OP`, the largest, and `NON_CONSTANT_OP` types come in
/// between. Within the types `NON_CONSTANT_OP` and `CONSTANT_OP`, the smaller
/// ones are the ones with smaller op names (lexicographically).
///
/// TODO: Include other information like attributes, value type, etc., to
/// enhance this comparison. For example, currently this comparison doesn't
/// differentiate between `cmpi sle` and `cmpi sgt` or `addi (in i32)` and
/// `addi (in i64)`. Such an enhancement should only be done if the need
/// arises.
bool operator<(const AncestorKey &key) const {
return std::tie(type, opName) < std::tie(key.type, key.opName);
}
};
/// Stores a commutative operand along with its BFS traversal information.
struct CommutativeOperand {
/// Stores the operand.
Value operand;
/// Stores the queue of ancestors of the operand's BFS traversal at a
/// particular point in time.
std::queue<Operation *> ancestorQueue;
/// Stores the list of ancestors that have been visited by the BFS traversal
/// at a particular point in time.
DenseSet<Operation *> visitedAncestors;
/// Stores the operand's "key". This "key" is defined as a list of the
/// "AncestorKeys" associated with the ancestors of this operand, in a
/// breadth-first order.
///
/// So, if an operand, say `A`, was produced as follows:
///
/// `<block argument>` `<block argument>`
/// \ /
/// \ /
/// `arith.subi` `arith.constant`
/// \ /
/// `arith.addi`
/// |
/// returns `A`
///
/// Then, the ancestors of `A`, in the breadth-first order are:
/// `arith.addi`, `arith.subi`, `arith.constant`, `<block argument>`, and
/// `<block argument>`.
///
/// Thus, the "key" associated with operand `A` is:
/// {
/// {type: `NON_CONSTANT_OP`, opName: "arith.addi"},
/// {type: `NON_CONSTANT_OP`, opName: "arith.subi"},
/// {type: `CONSTANT_OP`, opName: "arith.constant"},
/// {type: `BLOCK_ARGUMENT`, opName: ""},
/// {type: `BLOCK_ARGUMENT`, opName: ""}
/// }
SmallVector<AncestorKey, 4> key;
/// Push an ancestor into the operand's BFS information structure. This
/// entails it being pushed into the queue (always) and inserted into the
/// "visited ancestors" list (iff it is an op rather than a block argument).
void pushAncestor(Operation *op) {
ancestorQueue.push(op);
if (op)
visitedAncestors.insert(op);
}
/// Refresh the key.
///
/// Refreshing a key entails making it up-to-date with the operand's BFS
/// traversal that has happened till that point in time, i.e, appending the
/// existing key with the front ancestor's "AncestorKey". Note that a key
/// directly reflects the BFS and thus needs to be refreshed during the
/// progression of the traversal.
void refreshKey() {
if (ancestorQueue.empty())
return;
Operation *frontAncestor = ancestorQueue.front();
AncestorKey frontAncestorKey(frontAncestor);
key.push_back(frontAncestorKey);
}
/// Pop the front ancestor, if any, from the queue and then push its adjacent
/// unvisited ancestors, if any, to the queue (this is the main body of the
/// BFS algorithm).
void popFrontAndPushAdjacentUnvisitedAncestors() {
if (ancestorQueue.empty())
return;
Operation *frontAncestor = ancestorQueue.front();
ancestorQueue.pop();
if (!frontAncestor)
return;
for (Value operand : frontAncestor->getOperands()) {
Operation *operandDefOp = operand.getDefiningOp();
if (!operandDefOp || !visitedAncestors.contains(operandDefOp))
pushAncestor(operandDefOp);
}
}
};
/// Sorts the operands of `op` in ascending order of the "key" associated with
/// each operand iff `op` is commutative. This is a stable sort.
///
/// After the application of this pattern, since the commutative operands now
/// have a deterministic order in which they occur in an op, the matching of
/// large DAGs becomes much simpler, i.e., requires much less number of checks
/// to be written by a user in her/his pattern matching function.
///
/// Some examples of such a sorting:
///
/// Assume that the sorting is being applied to `foo.commutative`, which is a
/// commutative op.
///
/// Example 1:
///
/// %1 = foo.const 0
/// %2 = foo.mul <block argument>, <block argument>
/// %3 = foo.commutative %1, %2
///
/// Here,
/// 1. The key associated with %1 is:
/// `{
/// {CONSTANT_OP, "foo.const"}
/// }`
/// 2. The key associated with %2 is:
/// `{
/// {NON_CONSTANT_OP, "foo.mul"},
/// {BLOCK_ARGUMENT, ""},
/// {BLOCK_ARGUMENT, ""}
/// }`
///
/// The key of %2 < the key of %1
/// Thus, the sorted `foo.commutative` is:
/// %3 = foo.commutative %2, %1
///
/// Example 2:
///
/// %1 = foo.const 0
/// %2 = foo.mul <block argument>, <block argument>
/// %3 = foo.mul %2, %1
/// %4 = foo.add %2, %1
/// %5 = foo.commutative %1, %2, %3, %4
///
/// Here,
/// 1. The key associated with %1 is:
/// `{
/// {CONSTANT_OP, "foo.const"}
/// }`
/// 2. The key associated with %2 is:
/// `{
/// {NON_CONSTANT_OP, "foo.mul"},
/// {BLOCK_ARGUMENT, ""}
/// }`
/// 3. The key associated with %3 is:
/// `{
/// {NON_CONSTANT_OP, "foo.mul"},
/// {NON_CONSTANT_OP, "foo.mul"},
/// {CONSTANT_OP, "foo.const"},
/// {BLOCK_ARGUMENT, ""},
/// {BLOCK_ARGUMENT, ""}
/// }`
/// 4. The key associated with %4 is:
/// `{
/// {NON_CONSTANT_OP, "foo.add"},
/// {NON_CONSTANT_OP, "foo.mul"},
/// {CONSTANT_OP, "foo.const"},
/// {BLOCK_ARGUMENT, ""},
/// {BLOCK_ARGUMENT, ""}
/// }`
///
/// Thus, the sorted `foo.commutative` is:
/// %5 = foo.commutative %4, %3, %2, %1
class SortCommutativeOperands : public RewritePattern {
public:
SortCommutativeOperands(MLIRContext *context)
: RewritePattern(MatchAnyOpTypeTag(), /*benefit=*/5, context) {}
LogicalResult matchAndRewrite(Operation *op,
PatternRewriter &rewriter) const override {
// Custom comparator for two commutative operands, which returns true iff
// the "key" of `constCommOperandA` < the "key" of `constCommOperandB`,
// i.e.,
// 1. In the first unequal pair of corresponding AncestorKeys, the
// AncestorKey in `constCommOperandA` is smaller, or,
// 2. Both the AncestorKeys in every pair are the same and the size of
// `constCommOperandA`'s "key" is smaller.
auto commutativeOperandComparator =
[](const std::unique_ptr<CommutativeOperand> &constCommOperandA,
const std::unique_ptr<CommutativeOperand> &constCommOperandB) {
if (constCommOperandA->operand == constCommOperandB->operand)
return false;
auto &commOperandA =
const_cast<std::unique_ptr<CommutativeOperand> &>(
constCommOperandA);
auto &commOperandB =
const_cast<std::unique_ptr<CommutativeOperand> &>(
constCommOperandB);
// Iteratively perform the BFS's of both operands until an order among
// them can be determined.
unsigned keyIndex = 0;
while (true) {
if (commOperandA->key.size() <= keyIndex) {
if (commOperandA->ancestorQueue.empty())
return true;
commOperandA->popFrontAndPushAdjacentUnvisitedAncestors();
commOperandA->refreshKey();
}
if (commOperandB->key.size() <= keyIndex) {
if (commOperandB->ancestorQueue.empty())
return false;
commOperandB->popFrontAndPushAdjacentUnvisitedAncestors();
commOperandB->refreshKey();
}
if (commOperandA->ancestorQueue.empty() ||
commOperandB->ancestorQueue.empty())
return commOperandA->key.size() < commOperandB->key.size();
if (commOperandA->key[keyIndex] < commOperandB->key[keyIndex])
return true;
if (commOperandB->key[keyIndex] < commOperandA->key[keyIndex])
return false;
keyIndex++;
}
};
// If `op` is not commutative, do nothing.
if (!op->hasTrait<OpTrait::IsCommutative>())
return failure();
// Populate the list of commutative operands.
SmallVector<Value, 2> operands = op->getOperands();
SmallVector<std::unique_ptr<CommutativeOperand>, 2> commOperands;
for (Value operand : operands) {
std::unique_ptr<CommutativeOperand> commOperand =
std::make_unique<CommutativeOperand>();
commOperand->operand = operand;
commOperand->pushAncestor(operand.getDefiningOp());
commOperand->refreshKey();
commOperands.push_back(std::move(commOperand));
}
// Sort the operands.
std::stable_sort(commOperands.begin(), commOperands.end(),
commutativeOperandComparator);
SmallVector<Value, 2> sortedOperands;
for (const std::unique_ptr<CommutativeOperand> &commOperand : commOperands)
sortedOperands.push_back(commOperand->operand);
if (sortedOperands == operands)
return failure();
rewriter.updateRootInPlace(op, [&] { op->setOperands(sortedOperands); });
return success();
}
};
void mlir::populateCommutativityUtilsPatterns(RewritePatternSet &patterns) {
patterns.add<SortCommutativeOperands>(patterns.getContext());
}
|