1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
|
// RUN: mlir-opt -split-input-file -test-liveness-analysis %s 2>&1 | FileCheck %s
// Positive test: Type (1.a) "is an operand of an op with memory effects"
// zero is live because it is stored in memory.
// CHECK-LABEL: test_tag: zero:
// CHECK-NEXT: result #0: live
func.func @test_1_type_1.a(%arg0: memref<i32>) {
%c0_i32 = arith.constant {tag = "zero"} 0 : i32
memref.store %c0_i32, %arg0[] : memref<i32>
return
}
// -----
// Positive test: Type (1.b) "is a non-forwarded branch operand and a block
// where its op could take the control has an op with memory effects"
// %arg2 is live because it can make the control go into a block with a memory
// effecting op.
// Note that if `visitBranchOperand()` was left empty, it would have been
// incorrectly marked as "not live".
// CHECK-LABEL: test_tag: br:
// CHECK-NEXT: operand #0: live
// CHECK-NEXT: operand #1: live
// CHECK-NEXT: operand #2: live
func.func @test_2_RegionBranchOpInterface_type_1.b(%arg0: memref<i32>, %arg1: memref<i32>, %arg2: i1) {
%c0_i32 = arith.constant 0 : i32
cf.cond_br %arg2, ^bb1(%c0_i32 : i32), ^bb2(%c0_i32 : i32) {tag = "br"}
^bb1(%0 : i32):
memref.store %0, %arg0[] : memref<i32>
cf.br ^bb3
^bb2(%1 : i32):
memref.store %1, %arg1[] : memref<i32>
cf.br ^bb3
^bb3:
return
}
// -----
// Positive test: Type (1.b) "is a non-forwarded branch operand and a block
// where its op could take the control has an op with memory effects"
// %arg0 is live because it can make the control go into a block with a memory
// effecting op.
// Note that if `visitBranchOperand()` was left empty, it would have been
// incorrectly marked as "not live".
// CHECK-LABEL: test_tag: flag:
// CHECK-NEXT: operand #0: live
func.func @test_3_BranchOpInterface_type_1.b(%arg0: i32, %arg1: memref<i32>, %arg2: memref<i32>) {
%c0_i32 = arith.constant 0 : i32
cf.switch %arg0 : i32, [
default: ^bb1,
42: ^bb2
] {tag = "flag"}
^bb1:
memref.store %c0_i32, %arg1[] : memref<i32>
cf.br ^bb3
^bb2:
memref.store %c0_i32, %arg2[] : memref<i32>
cf.br ^bb3
^bb3:
return
}
// -----
// Positive test: Type (2) "is returned by a public function"
// zero is live because it is returned by a public function.
// CHECK-LABEL: test_tag: zero:
// CHECK-NEXT: result #0: live
func.func @test_4_type_2() -> (f32){
%0 = arith.constant {tag = "zero"} 0.0 : f32
return %0 : f32
}
// -----
// Positive test: Type (3) "is used to compute a value of type (1) or (2)"
// %arg1 is live because the scf.while has a live result and %arg1 is a
// non-forwarded branch operand.
// Note that if `visitBranchOperand()` was left empty, it would have been
// incorrectly marked as "not live".
// %arg2 is live because it is forwarded to the live result of the scf.while
// op.
// Negative test: %arg3 is not live even though %arg1 and %arg2 are live
// because it is neither a non-forwarded branch operand nor a forwarded
// operand that forwards to a live value. It actually is a forwarded operand
// that forwards to a non-live value.
// CHECK-LABEL: test_tag: condition:
// CHECK-NEXT: operand #0: live
// CHECK-NEXT: operand #1: live
// CHECK-NEXT: operand #2: not live
func.func @test_5_RegionBranchTerminatorOpInterface_type_3(%arg0: memref<i32>, %arg1: i1) -> (i32) {
%c0_i32 = arith.constant 0 : i32
%c1_i32 = arith.constant 1 : i32
%0:2 = scf.while (%arg2 = %c0_i32, %arg3 = %c1_i32) : (i32, i32) -> (i32, i32) {
scf.condition(%arg1) {tag = "condition"} %arg2, %arg3 : i32, i32
} do {
^bb0(%arg2: i32, %arg3: i32):
scf.yield %arg2, %arg3 : i32, i32
}
return %0#0 : i32
}
// -----
func.func private @private0(%0 : i32) -> i32 {
%1 = arith.addi %0, %0 {tag = "in_private0"} : i32
func.return %1 : i32
}
// Positive test: Type (3) "is used to compute a value of type (1) or (2)"
// zero, ten, and one are live because they are used to decide the number of
// times the `for` loop executes, which in turn decides the value stored in
// memory.
// Note that if `visitBranchOperand()` was left empty, they would have been
// incorrectly marked as "not live".
// in_private0 and x are also live because they decide the value stored in
// memory.
// Negative test: y is not live even though the non-forwarded branch operand
// and x are live.
// CHECK-LABEL: test_tag: in_private0:
// CHECK-NEXT: operand #0: live
// CHECK-NEXT: operand #1: live
// CHECK-NEXT: result #0: live
// CHECK-LABEL: test_tag: zero:
// CHECK-NEXT: result #0: live
// CHECK-LABEL: test_tag: ten:
// CHECK-NEXT: result #0: live
// CHECK-LABEL: test_tag: one:
// CHECK-NEXT: result #0: live
// CHECK-LABEL: test_tag: x:
// CHECK-NEXT: result #0: live
// CHECK-LABEL: test_tag: y:
// CHECK-NEXT: result #0: not live
func.func @test_6_type_3(%arg0: memref<i32>) {
%c0 = arith.constant {tag = "zero"} 0 : index
%c10 = arith.constant {tag = "ten"} 10 : index
%c1 = arith.constant {tag = "one"} 1 : index
%x = arith.constant {tag = "x"} 0 : i32
%y = arith.constant {tag = "y"} 1 : i32
%0:2 = scf.for %arg1 = %c0 to %c10 step %c1 iter_args(%arg2 = %x, %arg3 = %y) -> (i32, i32) {
%1 = arith.addi %x, %x : i32
%2 = func.call @private0(%1) : (i32) -> i32
scf.yield %2, %arg3 : i32, i32
}
memref.store %0#0, %arg0[] : memref<i32>
return
}
// -----
func.func private @private1(%0 : i32) -> i32 {
%1 = func.call @private2(%0) : (i32) -> i32
%2 = arith.muli %0, %1 {tag = "in_private1"} : i32
func.return %2 : i32
}
func.func private @private2(%0 : i32) -> i32 {
%cond = arith.index_cast %0 {tag = "in_private2"} : i32 to index
%1 = scf.index_switch %cond -> i32
case 1 {
%ten = arith.constant 10 : i32
scf.yield %ten : i32
}
case 2 {
%twenty = arith.constant 20 : i32
scf.yield %twenty : i32
}
default {
%thirty = arith.constant 30 : i32
scf.yield %thirty : i32
}
func.return %1 : i32
}
// Positive test: Type (3) "is used to compute a value of type (1) or (2)"
// in_private1, in_private2, and final are live because they are used to compute
// the value returned by this public function.
// CHECK-LABEL: test_tag: in_private1:
// CHECK-NEXT: operand #0: live
// CHECK-NEXT: operand #1: live
// CHECK-NEXT: result #0: live
// CHECK-LABEL: test_tag: in_private2:
// CHECK-NEXT: operand #0: live
// CHECK-NEXT: result #0: live
// CHECK-LABEL: test_tag: final:
// CHECK-NEXT: operand #0: live
// CHECK-NEXT: operand #1: live
// CHECK-NEXT: result #0: live
func.func @test_7_type_3(%arg: i32) -> (i32) {
%0 = func.call @private1(%arg) : (i32) -> i32
%final = arith.muli %0, %arg {tag = "final"} : i32
return %final : i32
}
// -----
// Negative test: None of the types (1), (2), or (3)
// zero is not live because it has no effect outside the program: it doesn't
// affect the memory or the program output.
// CHECK-LABEL: test_tag: zero:
// CHECK-NEXT: result #0: not live
// CHECK-LABEL: test_tag: one:
// CHECK-NEXT: result #0: live
func.func @test_8_negative() -> (f32){
%0 = arith.constant {tag = "zero"} 0.0 : f32
%1 = arith.constant {tag = "one"} 1.0 : f32
return %1 : f32
}
// -----
// Negative test: None of the types (1), (2), or (3)
// %1 is not live because it has no effect outside the program: it doesn't
// affect the memory or the program output. Even though it is returned by the
// function `@private_1`, it is never used by the caller.
// Note that this test clearly shows how this liveness analysis utility differs
// from the existing liveness utility present at
// llvm-project/mlir/include/mlir/Analysis/Liveness.h. The latter marks %1 as
// live as it exists the block of function `@private_1`, simply because it is
// computed inside and returned by the block, irrespective of whether or not it
// is used by the caller.
// CHECK-LABEL: test_tag: one:
// CHECK: result #0: not live
func.func private @private_1() -> (i32, i32) {
%0 = arith.constant 0 : i32
%1 = arith.addi %0, %0 {tag = "one"} : i32
return %0, %1 : i32, i32
}
func.func @test_9_negative() -> (i32) {
%0:2 = func.call @private_1() : () -> (i32, i32)
return %0#0 : i32
}
|