File: simplify-structures.mlir

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (569 lines) | stat: -rw-r--r-- 24,917 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
// RUN: mlir-opt -allow-unregistered-dialect %s -split-input-file -affine-simplify-structures | FileCheck %s

// CHECK-DAG: #[[$SET_2D:.*]] = affine_set<(d0, d1) : (d0 - 100 == 0, d1 - 10 == 0, -d0 + 100 >= 0, d1 >= 0)>
// CHECK-DAG: #[[$SET_7_11:.*]] = affine_set<(d0, d1) : (d0 * 7 + d1 * 5 + 88 == 0, d0 * 5 - d1 * 11 + 60 == 0, d0 * 11 + d1 * 7 - 24 == 0, d0 * 7 + d1 * 5 + 88 == 0)>

// An external function that we will use in bodies to avoid DCE.
func.func private @external() -> ()

// CHECK-LABEL: func @test_gaussian_elimination_empty_set0() {
func.func @test_gaussian_elimination_empty_set0() {
  affine.for %arg0 = 1 to 10 {
    affine.for %arg1 = 1 to 100 {
      // CHECK-NOT: affine.if
      affine.if affine_set<(d0, d1) : (2 == 0)>(%arg0, %arg1) {
        func.call @external() : () -> ()
      }
    }
  }
  return
}

// CHECK-LABEL: func @test_gaussian_elimination_empty_set1() {
func.func @test_gaussian_elimination_empty_set1() {
  affine.for %arg0 = 1 to 10 {
    affine.for %arg1 = 1 to 100 {
      // CHECK-NOT: affine.if
      affine.if affine_set<(d0, d1) : (1 >= 0, -1 >= 0)> (%arg0, %arg1) {
        func.call @external() : () -> ()
      }
    }
  }
  return
}

// CHECK-LABEL: func @test_gaussian_elimination_non_empty_set2() {
func.func @test_gaussian_elimination_non_empty_set2() {
  affine.for %arg0 = 1 to 10 {
    affine.for %arg1 = 1 to 100 {
      // CHECK: #[[$SET_2D]](%arg0, %arg1)
      affine.if affine_set<(d0, d1) : (d0 - 100 == 0, d1 - 10 == 0, -d0 + 100 >= 0, d1 >= 0, d1 + 101 >= 0)>(%arg0, %arg1) {
        func.call @external() : () -> ()
      }
    }
  }
  return
}

// CHECK-LABEL: func @test_gaussian_elimination_empty_set3() {
func.func @test_gaussian_elimination_empty_set3() {
  %c7 = arith.constant 7 : index
  %c11 = arith.constant 11 : index
  affine.for %arg0 = 1 to 10 {
    affine.for %arg1 = 1 to 100 {
      // CHECK-NOT: affine.if
      affine.if affine_set<(d0, d1)[s0, s1] : (d0 - s0 == 0, d0 + s0 == 0, s0 - 1 == 0)>(%arg0, %arg1)[%c7, %c11] {
        func.call @external() : () -> ()
      }
    }
  }
  return
}

// Set for test case: test_gaussian_elimination_non_empty_set4
#set_2d_non_empty = affine_set<(d0, d1)[s0, s1] : (d0 * 7 + d1 * 5 + s0 * 11 + s1 == 0,
                                       d0 * 5 - d1 * 11 + s0 * 7 + s1 == 0,
                                       d0 * 11 + d1 * 7 - s0 * 5 + s1 == 0,
                                       d0 * 7 + d1 * 5 + s0 * 11 + s1 == 0)>

// CHECK-LABEL: func @test_gaussian_elimination_non_empty_set4() {
func.func @test_gaussian_elimination_non_empty_set4() {
  %c7 = arith.constant 7 : index
  %c11 = arith.constant 11 : index
  affine.for %arg0 = 1 to 10 {
    affine.for %arg1 = 1 to 100 {
      // CHECK: #[[$SET_7_11]](%arg0, %arg1)
      affine.if #set_2d_non_empty(%arg0, %arg1)[%c7, %c11] {
        func.call @external() : () -> ()
      }
    }
  }
  return
}

// Add invalid constraints to previous non-empty set to make it empty.
#set_2d_empty = affine_set<(d0, d1)[s0, s1] : (d0 * 7 + d1 * 5 + s0 * 11 + s1 == 0,
                                       d0 * 5 - d1 * 11 + s0 * 7 + s1 == 0,
                                       d0 * 11 + d1 * 7 - s0 * 5 + s1 == 0,
                                       d0 * 7 + d1 * 5 + s0 * 11 + s1 == 0,
                                       d0 - 1 == 0, d0 + 2 == 0)>

// CHECK-LABEL: func @test_gaussian_elimination_empty_set5() {
func.func @test_gaussian_elimination_empty_set5() {
  %c7 = arith.constant 7 : index
  %c11 = arith.constant 11 : index
  affine.for %arg0 = 1 to 10 {
    affine.for %arg1 = 1 to 100 {
      // CHECK-NOT: affine.if
      affine.if #set_2d_empty(%arg0, %arg1)[%c7, %c11] {
        func.call @external() : () -> ()
      }
    }
  }
  return
}

// This is an artificially created system to exercise the worst case behavior of
// FM elimination - as a safeguard against improperly constructed constraint
// systems or fuzz input.
#set_fuzz_virus = affine_set<(d0, d1, d2, d3, d4, d5) : (
                            1089234*d0 + 203472*d1 + 82342 >= 0,
                            -55*d0 + 24*d1 + 238*d2 - 234*d3 - 9743 >= 0,
                            -5445*d0 - 284*d1 + 23*d2 + 34*d3 - 5943 >= 0,
                            -5445*d0 + 284*d1 + 238*d2 - 34*d3 >= 0,
                            445*d0 + 284*d1 + 238*d2 + 39*d3 >= 0,
                            -545*d0 + 214*d1 + 218*d2 - 94*d3 >= 0,
                            44*d0 - 184*d1 - 231*d2 + 14*d3 >= 0,
                            -45*d0 + 284*d1 + 138*d2 - 39*d3 >= 0,
                            154*d0 - 84*d1 + 238*d2 - 34*d3 >= 0,
                            54*d0 - 284*d1 - 223*d2 + 384*d3 >= 0,
                            -55*d0 + 284*d1 + 23*d2 + 34*d3 >= 0,
                            54*d0 - 84*d1 + 28*d2 - 34*d3 >= 0,
                            54*d0 - 24*d1 - 23*d2 + 34*d3 >= 0,
                            -55*d0 + 24*d1 + 23*d2 + 4*d3 >= 0,
                            15*d0 - 84*d1 + 238*d2 - 3*d3 >= 0,
                            5*d0 - 24*d1 - 223*d2 + 84*d3 >= 0,
                            -5*d0 + 284*d1 + 23*d2 - 4*d3 >= 0,
                            14*d0 + 4*d2 + 7234 >= 0,
                            -174*d0 - 534*d2 + 9834 >= 0,
                            194*d0 - 954*d2 + 9234 >= 0,
                            47*d0 - 534*d2 + 9734 >= 0,
                            -194*d0 - 934*d2 + 984 >= 0,
                            -947*d0 - 953*d2 + 234 >= 0,
                            184*d0 - 884*d2 + 884 >= 0,
                            -174*d0 + 834*d2 + 234 >= 0,
                            844*d0 + 634*d2 + 9874 >= 0,
                            -797*d2 - 79*d3 + 257 >= 0,
                            2039*d0 + 793*d2 - 99*d3 - 24*d4 + 234*d5 >= 0,
                            78*d2 - 788*d5 + 257 >= 0,
                            d3 - (d5 + 97*d0) floordiv 423 >= 0,
                            234* (d0 + d3 mod 5 floordiv 2342) mod 2309
                            + (d0 + 2038*d3) floordiv 208 >= 0,
                            239* (d0 + 2300 * d3) floordiv 2342
                            mod 2309 mod 239423 == 0,
                            d0 + d3 mod 2642 + (d3 + 2*d0) mod 1247
                            mod 2038 mod 2390 mod 2039 floordiv 55 >= 0
)>

// CHECK-LABEL: func @test_fuzz_explosion
func.func @test_fuzz_explosion(%arg0 : index, %arg1 : index, %arg2 : index, %arg3 : index) {
  affine.for %arg4 = 1 to 10 {
    affine.for %arg5 = 1 to 100 {
      affine.if #set_fuzz_virus(%arg4, %arg5, %arg0, %arg1, %arg2, %arg3) {
        func.call @external() : () -> ()
      }
    }
  }
  return
}

// CHECK-LABEL: func @test_empty_set(%arg0: index) {
func.func @test_empty_set(%N : index) {
  affine.for %i = 0 to 10 {
    affine.for %j = 0 to 10 {
      // CHECK-NOT: affine.if
      affine.if affine_set<(d0, d1) : (d0 - d1 >= 0, d1 - d0 - 1 >= 0)>(%i, %j) {
        "foo"() : () -> ()
      }
      // CHECK-NOT: affine.if
      affine.if affine_set<(d0) : (d0 >= 0, -d0 - 1 >= 0)>(%i) {
        "bar"() : () -> ()
      }
      // CHECK-NOT: affine.if
      affine.if affine_set<(d0) : (d0 >= 0, -d0 - 1 >= 0)>(%i) {
        "foo"() : () -> ()
      }
      // CHECK-NOT: affine.if
      affine.if affine_set<(d0)[s0, s1] : (d0 >= 0, -d0 + s0 - 1 >= 0, -s0 >= 0)>(%i)[%N, %N] {
        "bar"() : () -> ()
      }
      // CHECK-NOT: affine.if
      // The set below implies d0 = d1; so d1 >= d0, but d0 >= d1 + 1.
      affine.if affine_set<(d0, d1, d2) : (d0 - d1 == 0, d2 - d0 >= 0, d0 - d1 - 1 >= 0)>(%i, %j, %N) {
        "foo"() : () -> ()
      }
      // CHECK-NOT: affine.if
      // The set below has rational solutions but no integer solutions; GCD test catches it.
      affine.if affine_set<(d0, d1) : (d0*2 -d1*2 - 1 == 0, d0 >= 0, -d0 + 100 >= 0, d1 >= 0, -d1 + 100 >= 0)>(%i, %j) {
        "foo"() : () -> ()
      }
      // CHECK-NOT: affine.if
      affine.if affine_set<(d0, d1) : (d1 == 0, d0 - 1 >= 0, - d0 - 1 >= 0)>(%i, %j) {
        "foo"() : () -> ()
      }
    }
  }
  // The tests below test GCDTightenInequalities().
  affine.for %k = 0 to 10 {
    affine.for %l = 0 to 10 {
      // Empty because no multiple of 8 lies between 4 and 7.
      // CHECK-NOT: affine.if
      affine.if affine_set<(d0) : (8*d0 - 4 >= 0, -8*d0 + 7 >= 0)>(%k) {
        "foo"() : () -> ()
      }
      // Same as above but with equalities and inequalities.
      // CHECK-NOT: affine.if
      affine.if affine_set<(d0, d1) : (d0 - 4*d1 == 0, 4*d1 - 5 >= 0, -4*d1 + 7 >= 0)>(%k, %l) {
        "foo"() : () -> ()
      }
      // Same as above but with a combination of multiple identifiers. 4*d0 +
      // 8*d1 here is a multiple of 4, and so can't lie between 9 and 11. GCD
      // tightening will tighten constraints to 4*d0 + 8*d1 >= 12 and 4*d0 +
      // 8*d1 <= 8; hence infeasible.
      // CHECK-NOT: affine.if
      affine.if affine_set<(d0, d1) : (4*d0 + 8*d1 - 9 >= 0, -4*d0 - 8*d1 + 11 >= 0)>(%k, %l) {
        "foo"() : () -> ()
      }
      // Same as above but with equalities added into the mix.
      // CHECK-NOT: affine.if
      affine.if affine_set<(d0, d1, d2) : (d0 - 4*d2 == 0, d0 + 8*d1 - 9 >= 0, -d0 - 8*d1 + 11 >= 0)>(%k, %k, %l) {
        "foo"() : () -> ()
      }
    }
  }

  affine.for %m = 0 to 10 {
    // CHECK-NOT: affine.if
    affine.if affine_set<(d0) : (d0 mod 2 - 3 == 0)> (%m) {
      "foo"() : () -> ()
    }
  }

  return
}

// -----

// An external function that we will use in bodies to avoid DCE.
func.func private @external() -> ()

// CHECK-DAG: #[[$SET:.*]] = affine_set<()[s0] : (s0 >= 0, -s0 + 50 >= 0)

// CHECK-LABEL: func @simplify_set
func.func @simplify_set(%a : index, %b : index) {
  // CHECK: affine.if #[[$SET]]
  affine.if affine_set<(d0, d1) : (d0 - d1 + d1 + d0 >= 0, 2 >= 0, d0 >= 0, -d0 + 50 >= 0, -d0 + 100 >= 0)>(%a, %b) {
    func.call @external() : () -> ()
  }
  // CHECK-NOT: affine.if
  affine.if affine_set<(d0, d1) : (d0 mod 2 - 1 == 0, d0 - 2 * (d0 floordiv 2) == 0)>(%a, %b) {
    func.call @external() : () -> ()
  }
  // CHECK-NOT: affine.if
  affine.if affine_set<(d0, d1) : (1 >= 0, 3 >= 0)>(%a, %b) {
    func.call @external() : () -> ()
  }
	return
}

// -----

// CHECK-DAG: -> (s0 * 2 + 1)

// Test "op local" simplification on affine.apply. DCE on arith.addi will not happen.
func.func @affine.apply(%N : index) -> index {
  %v = affine.apply affine_map<(d0, d1) -> (d0 + d1 + 1)>(%N, %N)
  %res = arith.addi %v, %v : index
  // CHECK: affine.apply #map{{.*}}()[%arg0]
  // CHECK-NEXT: arith.addi
  return %res: index
}

// -----

// CHECK-LABEL: func @simplify_zero_dim_map
func.func @simplify_zero_dim_map(%in : memref<f32>) -> f32 {
  %out = affine.load %in[] : memref<f32>
  return %out : f32
}

// -----

// Tests the simplification of a semi-affine expression in various cases.
// CHECK-DAG: #[[$map0:.*]] = affine_map<()[s0, s1] -> (-(s1 floordiv s0) + 2)>
// CHECK-DAG: #[[$map1:.*]] = affine_map<()[s0, s1] -> (-(s1 floordiv s0) + 42)>

// Tests the simplification of a semi-affine expression with a modulo operation on a floordiv and multiplication.
// CHECK-LABEL: func @semiaffine_mod
func.func @semiaffine_mod(%arg0: index, %arg1: index) -> index {
  %a = affine.apply affine_map<(d0)[s0] ->((-((d0 floordiv s0) * s0) + s0 * s0) mod s0)> (%arg0)[%arg1]
  // CHECK:       %[[CST:.*]] = arith.constant 0
  return %a : index
}

// Tests the simplification of a semi-affine expression with a nested floordiv and a floordiv on modulo operation.
// CHECK-LABEL: func @semiaffine_floordiv
func.func @semiaffine_floordiv(%arg0: index, %arg1: index) -> index {
  %a = affine.apply affine_map<(d0)[s0] ->((-((d0 floordiv s0) * s0) + ((2 * s0) mod (3 * s0))) floordiv s0)> (%arg0)[%arg1]
  // CHECK: affine.apply #[[$map0]]()[%arg1, %arg0]
  return %a : index
}

// Tests the simplification of a semi-affine expression with a ceildiv operation and a division of arith.constant 0 by a symbol.
// CHECK-LABEL: func @semiaffine_ceildiv
func.func @semiaffine_ceildiv(%arg0: index, %arg1: index) -> index {
  %a = affine.apply affine_map<(d0)[s0] ->((-((d0 floordiv s0) * s0) + s0 * 42 + ((5-5) floordiv s0)) ceildiv  s0)> (%arg0)[%arg1]
  // CHECK: affine.apply #[[$map1]]()[%arg1, %arg0]
  return %a : index
}

// Tests the simplification of a semi-affine expression with a nested ceildiv operation and further simplifications after performing ceildiv.
// CHECK-LABEL: func @semiaffine_composite_floor
func.func @semiaffine_composite_floor(%arg0: index, %arg1: index) -> index {
  %a = affine.apply affine_map<(d0)[s0] ->(((((s0 * 2) ceildiv 4) * 5) + s0 * 42) ceildiv s0)> (%arg0)[%arg1]
  // CHECK:       %[[CST:.*]] = arith.constant 47
  return %a : index
}

// Tests the simplification of a semi-affine expression with a modulo operation with a second operand that simplifies to symbol.
// CHECK-LABEL: func @semiaffine_unsimplified_symbol
func.func @semiaffine_unsimplified_symbol(%arg0: index, %arg1: index) -> index {
  %a = affine.apply affine_map<(d0)[s0] ->(s0 mod (2 * s0 - s0))> (%arg0)[%arg1]
  // CHECK:       %[[CST:.*]] = arith.constant 0
  return %a : index
}

// -----

// Two external functions that we will use in bodies to avoid DCE.
func.func private @external() -> ()
func.func private @external1() -> ()

// CHECK-LABEL: func @test_always_true_if_elimination() {
func.func @test_always_true_if_elimination() {
  affine.for %arg0 = 1 to 10 {
    affine.for %arg1 = 1 to 100 {
      affine.if affine_set<(d0, d1) : (1 >= 0)> (%arg0, %arg1) {
        func.call @external() : () -> ()
      } else {
        func.call @external1() : () -> ()
      }
    }
  }
  return
}

// CHECK:      affine.for
// CHECK-NEXT:   affine.for
// CHECK-NEXT:     call @external()
// CHECK-NEXT:   }
// CHECK-NEXT: }

// CHECK-LABEL: func @test_always_false_if_elimination() {
func.func @test_always_false_if_elimination() {
  // CHECK: affine.for
  affine.for %arg0 = 1 to 10 {
    // CHECK: affine.for
    affine.for %arg1 = 1 to 100 {
      // CHECK: call @external1()
      // CHECK-NOT: affine.if
      affine.if affine_set<(d0, d1) : (-1 >= 0)> (%arg0, %arg1) {
        func.call @external() : () -> ()
      } else {
        func.call @external1() : () -> ()
      }
    }
  }
  return
}


// Testing: affine.if is not trivially true or false, nothing happens.
// CHECK-LABEL: func @test_dimensional_if_elimination() {
func.func @test_dimensional_if_elimination() {
  affine.for %arg0 = 1 to 10 {
    affine.for %arg1 = 1 to 100 {
      // CHECK: affine.if
      // CHECK: } else {
      affine.if affine_set<(d0, d1) : (d0-1 == 0)> (%arg0, %arg1) {
        func.call @external() : () -> ()
      } else {
        func.call @external() : () -> ()
      }
    }
  }
  return
}

// Testing: affine.if gets removed.
// CHECK-LABEL: func @test_num_results_if_elimination
func.func @test_num_results_if_elimination() -> index {
  // CHECK: %[[zero:.*]] = arith.constant 0 : index
  %zero = arith.constant 0 : index
  %0 = affine.if affine_set<() : ()> () -> index {
    affine.yield %zero : index
  } else {
    affine.yield %zero : index
  }
  // CHECK-NEXT: return %[[zero]] : index
  return %0 : index
}


// Three more test functions involving affine.if operations which are
// returning results:

// Testing: affine.if gets removed. `Else` block get promoted.
// CHECK-LABEL: func @test_trivially_false_returning_two_results
// CHECK-SAME: (%[[arg0:.*]]: index)
func.func @test_trivially_false_returning_two_results(%arg0: index) -> (index, index) {
  // CHECK: %[[c7:.*]] = arith.constant 7 : index
  // CHECK: %[[c13:.*]] = arith.constant 13 : index
  %c7 = arith.constant 7 : index
  %c13 = arith.constant 13 : index
  // CHECK: %[[c2:.*]] = arith.constant 2 : index
  // CHECK: %[[c3:.*]] = arith.constant 3 : index
  %res:2 = affine.if affine_set<(d0, d1) : (5 >= 0, -2 >= 0)> (%c7, %c13) -> (index, index) {
    %c0 = arith.constant 0 : index
    %c1 = arith.constant 1 : index
    affine.yield %c0, %c1 : index, index
  } else {
    %c2 = arith.constant 2 : index
    %c3 = arith.constant 3 : index
    affine.yield %c7, %arg0 : index, index
  }
  // CHECK-NEXT: return %[[c7]], %[[arg0]] : index, index
  return %res#0, %res#1 : index, index
}

// Testing: affine.if gets removed. `Then` block get promoted.
// CHECK-LABEL: func @test_trivially_true_returning_five_results
func.func @test_trivially_true_returning_five_results() -> (index, index, index, index, index) {
  // CHECK: %[[c12:.*]] = arith.constant 12 : index
  // CHECK: %[[c13:.*]] = arith.constant 13 : index
  %c12 = arith.constant 12 : index
  %c13 = arith.constant 13 : index
  // CHECK: %[[c0:.*]] = arith.constant 0 : index
  // CHECK: %[[c1:.*]] = arith.constant 1 : index
  // CHECK: %[[c2:.*]] = arith.constant 2 : index
  // CHECK: %[[c3:.*]] = arith.constant 3 : index
  // CHECK: %[[c4:.*]] = arith.constant 4 : index
  %res:5 = affine.if affine_set<(d0, d1) : (1 >= 0, 3 >= 0)>(%c12, %c13) -> (index, index, index, index, index) {
    %c0 = arith.constant 0 : index
    %c1 = arith.constant 1 : index
    %c2 = arith.constant 2 : index
    %c3 = arith.constant 3 : index
    %c4 = arith.constant 4 : index
    affine.yield %c0, %c1, %c2, %c3, %c4 : index, index, index, index, index
  } else {
    %c5 = arith.constant 5 : index
    %c6 = arith.constant 6 : index
    %c7 = arith.constant 7 : index
    %c8 = arith.constant 8 : index
    %c9 = arith.constant 9 : index
    affine.yield %c5, %c6, %c7, %c8, %c9 : index, index, index, index, index
  }
  // CHECK-NEXT: return %[[c0]], %[[c1]], %[[c2]], %[[c3]], %[[c4]] : index, index, index, index, index
  return %res#0, %res#1, %res#2, %res#3, %res#4 : index, index, index, index, index
}

// Testing: affine.if doesn't get removed.
// CHECK-LABEL: func @test_not_trivially_true_or_false_returning_three_results
func.func @test_not_trivially_true_or_false_returning_three_results() -> (index, index, index) {
  // CHECK: %[[c8:.*]] = arith.constant 8 : index
  // CHECK: %[[c13:.*]] = arith.constant 13 : index
  %c8 = arith.constant 8 : index
  %c13 = arith.constant 13 : index
  // CHECK: affine.if
  %res:3 = affine.if affine_set<(d0, d1) : (d0 - 1 == 0)>(%c8, %c13) -> (index, index, index) {
    %c0 = arith.constant 0 : index
    %c1 = arith.constant 1 : index
    %c2 = arith.constant 2 : index
    affine.yield %c0, %c1, %c2 : index, index, index
  // CHECK: } else {
  } else {
    %c3 = arith.constant 3 : index
    %c4 = arith.constant 4 : index
    %c5 = arith.constant 5 : index
    affine.yield %c3, %c4, %c5 : index, index, index
  }
  return %res#0, %res#1, %res#2 : index, index, index
}

// -----

// Test simplification of mod expressions.
// CHECK-DAG:   #[[$MOD:.*]] = affine_map<()[s0, s1, s2, s3, s4] -> (s3 + s4 * s1 + (s0 - s1) mod s2)>
// CHECK-DAG:   #[[$SIMPLIFIED_MOD_RHS:.*]] = affine_map<()[s0, s1, s2, s3] -> (s3 mod (s2 - s0 * s1))>
// CHECK-DAG:   #[[$MODULO_AND_PRODUCT:.*]] = affine_map<()[s0, s1, s2, s3] -> (s0 * s1 + s3 - (-s0 + s3) mod s2)>
// CHECK-LABEL: func @semiaffine_simplification_mod
// CHECK-SAME:  (%[[ARG0:.*]]: index, %[[ARG1:.*]]: index, %[[ARG2:.*]]: index, %[[ARG3:.*]]: index, %[[ARG4:.*]]: index, %[[ARG5:.*]]: index)
func.func @semiaffine_simplification_mod(%arg0: index, %arg1: index, %arg2: index, %arg3: index, %arg4: index, %arg5: index) -> (index, index, index) {
  %a = affine.apply affine_map<(d0, d1)[s0, s1, s2, s3] -> ((-(d1 * s0 - (s0 - s1) mod s2) + s3) + (d0 * s1 + d1 * s0))>(%arg0, %arg1)[%arg2, %arg3, %arg4, %arg5]
  %b = affine.apply affine_map<(d0)[s0, s1, s2, s3] -> (d0 mod (s0 - s1 * s2 + s3 - s0))>(%arg0)[%arg0, %arg1, %arg2, %arg3]
  %c = affine.apply affine_map<(d0)[s0, s1, s2] -> (d0 + (d0 + s0) mod s2 + s0 * s1 - (d0 + s0) mod s2 - (d0 - s0) mod s2)>(%arg0)[%arg1, %arg2, %arg3]
  return %a, %b, %c : index, index, index
}
// CHECK-NEXT: %[[RESULT0:.*]] = affine.apply #[[$MOD]]()[%[[ARG2]], %[[ARG3]], %[[ARG4]], %[[ARG5]], %[[ARG0]]]
// CHECK-NEXT: %[[RESULT1:.*]] = affine.apply #[[$SIMPLIFIED_MOD_RHS]]()[%[[ARG1]], %[[ARG2]], %[[ARG3]], %[[ARG0]]]
// CHECK-NEXT: %[[RESULT2:.*]] = affine.apply #[[$MODULO_AND_PRODUCT]]()[%[[ARG1]], %[[ARG2]], %[[ARG3]], %[[ARG0]]]
// CHECK-NEXT: return %[[RESULT0]], %[[RESULT1]], %[[RESULT2]]

// -----

// Test simplification of floordiv and ceildiv expressions.
// CHECK-DAG:   #[[$SIMPLIFIED_FLOORDIV_RHS:.*]] = affine_map<()[s0, s1, s2, s3] -> (s3 floordiv (s2 - s0 * s1))>
// CHECK-DAG:   #[[$FLOORDIV:.*]] = affine_map<()[s0, s1, s2, s3] -> (s0 + s3 + (s0 - s1) floordiv s2)>
// CHECK-DAG:   #[[$SIMPLIFIED_CEILDIV_RHS:.*]] = affine_map<()[s0, s1, s2, s3] -> (s3 ceildiv (s2 - s0 * s1))>
// CHECK-LABEL: func @semiaffine_simplification_floordiv_and_ceildiv
// CHECK-SAME:  (%[[ARG0:.*]]: index, %[[ARG1:.*]]: index, %[[ARG2:.*]]: index, %[[ARG3:.*]]: index, %[[ARG4:.*]]: index)
func.func @semiaffine_simplification_floordiv_and_ceildiv(%arg0: index, %arg1: index, %arg2: index, %arg3: index, %arg4: index) -> (index, index, index) {
  %a = affine.apply affine_map<(d0)[s0, s1, s2, s3] -> (d0 floordiv (s0 - s1 * s2 + s3 - s0))>(%arg0)[%arg0, %arg1, %arg2, %arg3]
  %b = affine.apply affine_map<(d0)[s0, s1, s2, s3] -> ((-(d0 * s1 - (s0 - s1) floordiv s2) + s3) + (d0 * s1 + s0))>(%arg0)[%arg1, %arg2, %arg3, %arg4]
  %c = affine.apply affine_map<(d0)[s0, s1, s2, s3] -> (d0 ceildiv (s0 - s1 * s2 + s3 - s0))>(%arg0)[%arg0, %arg1, %arg2, %arg3]
  return %a, %b, %c : index, index, index
}
// CHECK-NEXT: %[[RESULT0:.*]] = affine.apply #[[$SIMPLIFIED_FLOORDIV_RHS]]()[%[[ARG1]], %[[ARG2]], %[[ARG3]], %[[ARG0]]]
// CHECK-NEXT: %[[RESULT1:.*]] = affine.apply #[[$FLOORDIV]]()[%[[ARG1]], %[[ARG2]], %[[ARG3]], %[[ARG4]]]
// CHECK-NEXT: %[[RESULT2:.*]] = affine.apply #[[$SIMPLIFIED_CEILDIV_RHS]]()[%[[ARG1]], %[[ARG2]], %[[ARG3]], %[[ARG0]]]
// CHECK-NEXT: return %[[RESULT0]], %[[RESULT1]], %[[RESULT2]]

// -----

// Test simplification of product expressions.
// CHECK-DAG:   #[[$PRODUCT:.*]] = affine_map<()[s0, s1, s2, s3, s4] -> (s3 + s4 + (s0 - s1) * s2)>
// CHECK-DAG:   #[[$SUM_OF_PRODUCTS:.*]] = affine_map<()[s0, s1, s2, s3, s4] -> (s2 + s2 * s0 + s3 + s3 * s0 + s3 * s1 + s4 + s4 * s1)>
// CHECK-LABEL: func @semiaffine_simplification_product
// CHECK-SAME:  (%[[ARG0:.*]]: index, %[[ARG1:.*]]: index, %[[ARG2:.*]]: index, %[[ARG3:.*]]: index, %[[ARG4:.*]]: index, %[[ARG5:.*]]: index)
func.func @semiaffine_simplification_product(%arg0: index, %arg1: index, %arg2: index, %arg3: index, %arg4: index, %arg5: index) -> (index, index) {
  %a = affine.apply affine_map<(d0)[s0, s1, s2, s3] -> ((-(s0 - (s0 - s1) * s2) + s3) + (d0 + s0))>(%arg0)[%arg1, %arg2, %arg3, %arg4]
  %b = affine.apply affine_map<(d0, d1, d2)[s0, s1] -> (d0 + d1 * s1 + d1 + d0 * s0 + d1 * s0 + d2 * s1 + d2)>(%arg0, %arg1, %arg2)[%arg3, %arg4]
  return %a, %b : index, index
}
// CHECK-NEXT: %[[RESULT0:.*]] = affine.apply #[[$PRODUCT]]()[%[[ARG1]], %[[ARG2]], %[[ARG3]], %[[ARG4]], %[[ARG0]]]
// CHECK-NEXT: %[[RESULT1:.*]] = affine.apply #[[$SUM_OF_PRODUCTS]]()[%[[ARG3]], %[[ARG4]], %[[ARG0]], %[[ARG1]], %[[ARG2]]]
// CHECK-NEXT: return %[[RESULT0]], %[[RESULT1]]

// -----

// CHECK-DAG: #[[$SIMPLIFIED_MAP:.*]] = affine_map<()[s0, s1, s2, s3] -> ((-s0 + s2 + s3) mod (s0 + s1))>
// CHECK-LABEL: func @semi_affine_simplification_euclidean_lemma
// CHECK-SAME: (%[[ARG0:.*]]: index, %[[ARG1:.*]]: index, %[[ARG2:.*]]: index, %[[ARG3:.*]]: index, %[[ARG4:.*]]: index, %[[ARG5:.*]]: index)
func.func @semi_affine_simplification_euclidean_lemma(%arg0: index, %arg1: index, %arg2: index, %arg3: index, %arg4: index, %arg5: index) -> (index, index) {
  %a = affine.apply affine_map<(d0, d1)[s0, s1] -> ((d0 + d1) - ((d0 + d1) floordiv (s0 - s1)) * (s0 - s1) - (d0 + d1) mod (s0 - s1))>(%arg0, %arg1)[%arg2, %arg3]
  %b = affine.apply affine_map<(d0, d1)[s0, s1] -> ((d0 + d1 - s0) - ((d0 + d1 - s0) floordiv (s0 + s1)) * (s0 + s1))>(%arg0, %arg1)[%arg2, %arg3]
  return %a, %b : index, index
}
// CHECK-NEXT: %[[ZERO:.*]] = arith.constant 0 : index
// CHECK-NEXT: %[[RESULT:.*]] = affine.apply #[[$SIMPLIFIED_MAP]]()[%[[ARG2]], %[[ARG3]], %[[ARG0]], %[[ARG1]]]
// CHECK-NEXT: return %[[ZERO]], %[[RESULT]]

// -----

// CHECK-DAG: #[[$MAP:.*]] = affine_map<()[s0] -> (s0 mod 2 + (s0 floordiv 2) * s0)>
// CHECK-LABEL: func @semiaffine_modulo
func.func @semiaffine_modulo(%arg0: index) -> index {
  %a = affine.apply affine_map<()[s0] -> (s0 mod 2 + (s0 floordiv 2) * s0)> ()[%arg0]
  // CHECK: affine.apply #[[$MAP]]()[%{{.*}}]
  return %a : index
}

// -----

// CHECK-DAG: #[[$MAP:.*]] = affine_map<()[s0, s1, s2] -> (s2 mod 2 + (s1 floordiv 2) * 2 + ((s2 floordiv 2) * s0) * 2)>
// CHECK-LABEL: func @semiaffine_modulo_dim
func.func @semiaffine_modulo_dim(%arg0: index, %arg1: index, %arg2: index) -> index {
  %a = affine.apply affine_map<(d0)[s0, s1] -> (((d0 floordiv 2) * s0 + s1 floordiv 2) * 2 + d0 mod 2)> (%arg0)[%arg1, %arg2]
  //CHECK: affine.apply #[[$MAP]]()[%{{.*}}, %{{.*}}, %{{.*}}]
  return %a : index
}