File: one-shot-bufferize-analysis-empty-tensor-elimination.mlir

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (49 lines) | stat: -rw-r--r-- 2,316 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
// RUN: mlir-opt %s -eliminate-empty-tensors -empty-tensor-to-alloc-tensor -one-shot-bufferize="bufferize-function-boundaries test-analysis-only allow-return-allocs" -split-input-file | FileCheck %s

// CHECK-LABEL: func @buffer_forwarding_conflict
func.func @buffer_forwarding_conflict(%arg0: tensor<?xf32> {bufferization.writable = true}, %arg1: index) -> (tensor<?xf32>, tensor<?xf32>) {
  %cst = arith.constant 0.000000e+00 : f32
  //      CHECK: tensor.extract_slice
  // CHECK-SAME: {__inplace_operands_attr__ = ["false", "none"]
  // Instead of allocating, share buffer with some inplace bufferization?
  %0 = tensor.empty(%arg1) : tensor<?xf32>

  //      CHECK: linalg.fill
  // CHECK-SAME: {__inplace_operands_attr__ = ["none", "true"]
  %1 = linalg.fill ins(%cst : f32) outs(%0 : tensor<?xf32>) -> tensor<?xf32>

  //      CHECK: tensor.insert_slice
  // CHECK-SAME: {__inplace_operands_attr__ = ["true", "false", "none"]
  %2 = tensor.insert_slice %1 into %arg0[0] [%arg1] [1] : tensor<?xf32> into tensor<?xf32>

  //      CHECK: tensor.insert_slice
  // CHECK-SAME: {__inplace_operands_attr__ = ["true", "true", "none"]
  %3 = tensor.insert_slice %1 into %arg0[42] [%arg1] [1] : tensor<?xf32> into tensor<?xf32>

  //      CHECK: return
  // CHECK-SAME: __equivalent_func_args__ = [-1, 0]
  return %2, %3 : tensor<?xf32>, tensor<?xf32>
}

// -----

// CHECK-LABEL: func @buffer_forwarding_no_conflict
func.func @buffer_forwarding_no_conflict(%arg0: tensor<?xf32> {bufferization.writable = true}, %arg1: index) -> (tensor<?xf32>, tensor<?xf32>) {
  %cst = arith.constant 0.000000e+00 : f32
  //      CHECK: tensor.extract_slice
  // CHECK-SAME: {__inplace_operands_attr__ = ["true", "none"]
  // Instead of allocating, share buffer with some inplace bufferization?
  %0 = tensor.empty(%arg1) : tensor<?xf32>

  //      CHECK: linalg.fill
  // CHECK-SAME: {__inplace_operands_attr__ = ["none", "true"]
  %1 = linalg.fill ins(%cst : f32) outs(%0 : tensor<?xf32>) -> tensor<?xf32>

  //      CHECK: tensor.insert_slice
  // CHECK-SAME: {__inplace_operands_attr__ = ["true", "true", "none"]
  %2 = tensor.insert_slice %1 into %arg0[42] [%arg1] [1] : tensor<?xf32> into tensor<?xf32>

  //      CHECK: return
  // CHECK-SAME: __equivalent_func_args__ = [0, 0]
  return %2, %2 : tensor<?xf32>, tensor<?xf32>
}