File: one-shot-bufferize-empty-tensor-elimination.mlir

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (275 lines) | stat: -rw-r--r-- 11,525 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
// RUN: mlir-opt %s -eliminate-empty-tensors -empty-tensor-to-alloc-tensor -one-shot-bufferize="bufferize-function-boundaries allow-return-allocs" -cse -canonicalize -split-input-file | FileCheck %s

//      CHECK: func @buffer_forwarding_conflict(
// CHECK-SAME:   %[[FUNC_ARG:[0-9a-zA-Z]*]]: memref<?xf32>
// CHECK-SAME:   %[[sz:[0-9a-zA-Z]*]]: index
func.func @buffer_forwarding_conflict(
  %t: tensor<?xf32> {bufferization.buffer_layout = affine_map<(d0) -> (d0)>, bufferization.writable = true},
  %sz: index)
    -> (tensor<?xf32>, tensor<?xf32>)
{
  %f0 = arith.constant 0.0: f32

  //     CHECK: %[[EXTRACT_SLICE_ALLOC:.*]] = memref.alloc(%[[sz]])
  //     CHECK: linalg.fill ins({{.*}} : f32) outs(%[[EXTRACT_SLICE_ALLOC]] : memref<?xf32>)
  // Alloc is needed for the **first** insert_slice (due to backward traversal during analysis).
  //     CHECK: %[[DIM:.*]] = memref.dim %[[FUNC_ARG]]
  // This allocs the whole dim to allow for a full clone of t.
  //     CHECK: %[[ALLOC:.*]] = memref.alloc(%[[DIM]])
  // tensor.empty itself does not alloc but forwards to the **second**
  // insert_slice. The pass replaces the tensor.empty with an out-of-place
  // extract_slice.
  %a = tensor.empty(%sz) : tensor<?xf32>
  %f = linalg.fill ins(%f0 : f32) outs(%a : tensor<?xf32>) -> tensor<?xf32>

  //     CHECK: memref.copy %[[FUNC_ARG]], %[[ALLOC]] : memref<?xf32> to memref<?xf32>
  //     CHECK: %[[SV0_ALLOC:.*]] = memref.subview %[[ALLOC]][0] [%[[sz]]] [1] : memref<?xf32> to memref<?xf32, strided<[1]>>
  //     CHECK: memref.copy %[[EXTRACT_SLICE_ALLOC]], %[[SV0_ALLOC]] : memref<?xf32> to memref<?xf32, strided<[1]>>
  %r0 = tensor.insert_slice %f into %t[0][%sz][1]: tensor<?xf32> into tensor<?xf32>

  //     CHECK: %[[T_SUBVIEW:.*]] =  memref.subview %[[FUNC_ARG]][42] [%[[sz]]] [1]
  //     CHECK: memref.copy %[[EXTRACT_SLICE_ALLOC]], %[[T_SUBVIEW]]
  %r1 = tensor.insert_slice %f into %t[42][%sz][1]: tensor<?xf32> into tensor<?xf32>

  return %r0, %r1: tensor<?xf32>, tensor<?xf32>
}

// -----

//      CHECK: func @buffer_forwarding_no_conflict(
// CHECK-SAME:   %[[FUNC_ARG:[0-9a-zA-Z]*]]: memref<?xf32>
// CHECK-SAME:   %[[sz:[0-9a-zA-Z]*]]: index
func.func @buffer_forwarding_no_conflict(
  %t: tensor<?xf32> {bufferization.buffer_layout = affine_map<(d0) -> (d0)>, bufferization.writable = true},
  %sz: index)
    -> (tensor<?xf32>)
{
  %f0 = arith.constant 0.0: f32

  // tensor.empty itself does not alloc but forwards to the insert_slice.
  // EmptyTensorOpElimination replaces the tensor.empty with an inplace
  // extract_slice.
  // CHECK: %[[T_SUBVIEW:.*]] =  memref.subview %[[FUNC_ARG]][42] [%[[sz]]] [1]
  %a = tensor.empty(%sz) : tensor<?xf32>

  // CHECK: linalg.fill ins({{.*}} : f32) outs(%[[T_SUBVIEW]] : memref<?xf32
  %f = linalg.fill ins(%f0 : f32) outs(%a : tensor<?xf32>) -> tensor<?xf32>

  // Self-copy canonicalizes away later.
  %r1 = tensor.insert_slice %f into %t[42][%sz][1]: tensor<?xf32> into tensor<?xf32>

  return %r1: tensor<?xf32>
}

// -----

//      CHECK: func @insertion_point_inside_loop(
// CHECK-SAME:     %[[t:.*]]: memref<?xf32, strided{{.*}}>, %[[sz:.*]]: index)
func.func @insertion_point_inside_loop(%t : tensor<?xf32>, %sz : index) -> (tensor<?xf32>) {
  %c0 = arith.constant 0 : index
  %c1 = arith.constant 1 : index
  %c5 = arith.constant 5 : index

  // CHECK-NOT: memref.alloc
  %blank = tensor.empty() : tensor<5xf32>

  // CHECK: scf.for %[[iv:.*]] = %{{.*}} to %[[sz]] step %{{.*}} {
  %r = scf.for %iv = %c0 to %sz step %c5 iter_args(%bb = %t) -> (tensor<?xf32>) {
    // CHECK: %[[subview:.*]] = memref.subview %[[t]][%[[iv]]] [5] [1]
    %iv_i32 = arith.index_cast %iv : index to i32
    %f = arith.sitofp %iv_i32 : i32 to f32

    // CHECK: linalg.fill ins(%{{.*}}{{.*}}outs(%[[subview]]
    %filled = linalg.fill ins(%f : f32) outs(%blank : tensor<5xf32>) -> tensor<5xf32>

    // CHECK-NOT: memref.copy
    %inserted = tensor.insert_slice %filled into %bb[%iv][5][1] : tensor<5xf32> into tensor<?xf32>
    scf.yield %inserted : tensor<?xf32>
  }

  return %r : tensor<?xf32>
}

// -----

//      CHECK: func @insertion_point_outside_loop(
// CHECK-SAME:     %[[t:.*]]: memref<?xf32, strided{{.*}}>, %[[sz:.*]]: index, %[[idx:.*]]: index)
func.func @insertion_point_outside_loop(%t : tensor<?xf32>, %sz : index,
                                        %idx : index) -> (tensor<?xf32>) {
  %c0 = arith.constant 0 : index
  %c1 = arith.constant 1 : index
  %c5 = arith.constant 5 : index

  // CHECK-NOT: memref.alloc
  %blank = tensor.empty() : tensor<5xf32>

  // CHECK: scf.for %[[iv:.*]] = %{{.*}} to %[[sz]] step %{{.*}} {
  %r = scf.for %iv = %c0 to %sz step %c5 iter_args(%bb = %t) -> (tensor<?xf32>) {
    %iv_i32 = arith.index_cast %iv : index to i32
    %f = arith.sitofp %iv_i32 : i32 to f32

    // CHECK: %[[subview:.*]] = memref.subview %[[t]][%[[idx]]] [5] [1]
    // CHECK: linalg.fill ins(%{{.*}}{{.*}}outs(%[[subview]]
    %filled = linalg.fill ins(%f : f32) outs(%blank : tensor<5xf32>) -> tensor<5xf32>

    // CHECK-NOT: memref.copy
    %inserted = tensor.insert_slice %filled into %bb[%idx][5][1] : tensor<5xf32> into tensor<?xf32>
    scf.yield %inserted : tensor<?xf32>
  }

  return %r : tensor<?xf32>
}

// -----

// EmptyTensorElimination does currently not apply to chains where the type is
// changing. This test just ensures that we do not crash or generate IR that
// does not verify.

// CHECK-LABEL: func @shape_mismatch
func.func @shape_mismatch(%t: tensor<5x6x128xf32>) -> tensor<5x6x128xf32> {
  %cst = arith.constant 8.0 : f32
  %0 = tensor.empty() : tensor<128xf32>
  %1 = linalg.fill ins(%cst : f32) outs(%0 : tensor<128xf32>) -> tensor<128xf32>
  %2 = tensor.expand_shape %1 [[0, 1, 2]]
      : tensor<128xf32> into tensor<1x1x128xf32>
  %3 = tensor.insert_slice %2 into %t[2, 3, 0][1, 1, 128][1, 1, 1]
      : tensor<1x1x128xf32> into tensor<5x6x128xf32>
  return %3 : tensor<5x6x128xf32>
}

// -----

//      CHECK: func @parallel_insert_slice(
// CHECK-SAME:   %[[FUNC_ARG:[0-9a-zA-Z]*]]: memref<?xf32>
// CHECK-SAME:   %[[sz:[0-9a-zA-Z]*]]: index
func.func @parallel_insert_slice(
  %t: tensor<?xf32> {bufferization.buffer_layout = affine_map<(d0) -> (d0)>, bufferization.writable = true},
  %sz: index)
    -> (tensor<?xf32>)
{
  %f0 = arith.constant 0.0: f32
  %c512 = arith.constant 512 : index

  %r1 = scf.forall (%iv) in (%c512) shared_outs(%o = %t) -> (tensor<?xf32>) {
    // tensor.empty itself does not alloc but forwards to the insert_slice.
    // EmptyTensorOpElimination replaces the tensor.empty with an inplace
    // extract_slice.
    // CHECK: %[[T_SUBVIEW:.*]] =  memref.subview %[[FUNC_ARG]][42] [%[[sz]]] [1]
    %a = tensor.empty(%sz) : tensor<?xf32>

    // CHECK: linalg.fill ins({{.*}} : f32) outs(%[[T_SUBVIEW]] : memref<?xf32
    %f = linalg.fill ins(%f0 : f32) outs(%a : tensor<?xf32>) -> tensor<?xf32>

    // Self-copy canonicalizes away later.
    scf.forall.in_parallel {
      tensor.parallel_insert_slice %f into %o[42][%sz][1]: tensor<?xf32> into tensor<?xf32>
    }
  }

  return %r1: tensor<?xf32>
}

// -----

// CHECK-LABEL: func @eleminate_multiple_ops(
//  CHECK-SAME:   %[[FUNC_ARG:[0-9a-zA-Z]*]]: memref<?xf32>
//  CHECK-SAME:   %[[sz:[0-9a-zA-Z]*]]: index
func.func @eleminate_multiple_ops(%t: tensor<?xf32> {bufferization.buffer_layout = affine_map<(d0) -> (d0)>}, %sz: index, %c: i1)
    -> (tensor<?xf32>)
{
  %cst1 = arith.constant 0.0: f32
  %cst2 = arith.constant 1.0: f32

  // CHECK: %[[r:.*]] = scf.if %{{.*}} -> (memref
  %if = scf.if %c -> tensor<?xf32> {
    // CHECK: %[[T_SUBVIEW_1:.*]] =  memref.subview %[[FUNC_ARG]][42] [%[[sz]]] [1]
    %a1 = tensor.empty(%sz) : tensor<?xf32>
    // CHECK: linalg.fill ins({{.*}} : f32) outs(%[[T_SUBVIEW_1]] : memref<?xf32
    %f1 = linalg.fill ins(%cst1 : f32) outs(%a1 : tensor<?xf32>) -> tensor<?xf32>
    // CHECK: scf.yield %[[T_SUBVIEW_1]]
    scf.yield %f1 : tensor<?xf32>
  } else {
      // CHECK: %[[T_SUBVIEW_2:.*]] =  memref.subview %[[FUNC_ARG]][42] [%[[sz]]] [1]
    %a2 = tensor.empty(%sz) : tensor<?xf32>
    // CHECK: linalg.fill ins({{.*}} : f32) outs(%[[T_SUBVIEW_2]] : memref<?xf32
    %f2 = linalg.fill ins(%cst2 : f32) outs(%a2 : tensor<?xf32>) -> tensor<?xf32>
    // CHECK: scf.yield %[[T_SUBVIEW_2]]
    scf.yield %f2 : tensor<?xf32>
  }

  // Self-copy could canonicalize away later.
  // CHECK: %[[T_SUBVIEW_3:.*]] =  memref.subview %[[FUNC_ARG]][42] [%[[sz]]] [1]
  // CHECK: memref.copy %[[r]], %[[T_SUBVIEW_3]]
  %r1 = tensor.insert_slice %if into %t[42][%sz][1]: tensor<?xf32> into tensor<?xf32>
  return %r1: tensor<?xf32>
}

// -----

// This is a regression test. Make sure that the tensor.extract_slice is not
// eliminated.

// CHECK-LABEL: func.func @regression_do_not_eliminate_non_empty(
//       CHECK:   memref.subview
//       CHECK:   memref.subview
//       CHECK:   memref.copy
func.func @regression_do_not_eliminate_non_empty(
    %t: tensor<10xf32>, %t2: tensor<10xf32>) -> tensor<10xf32> {
  %1 = tensor.extract_slice %t[0] [5] [1] : tensor<10xf32> to tensor<5xf32>
  %2 = tensor.insert_slice %1 into %t2[1] [5] [1]
      : tensor<5xf32> into tensor<10xf32>
  return %2 : tensor<10xf32>
}

// -----

// This is a regression test. Make sure that there is no crash.

// CHECK-LABEL: func.func @regression_insert_of_bbarg(
func.func @regression_insert_of_bbarg(%t0: tensor<5xf32>, %t1: tensor<10xf32>) -> tensor<10xf32> {
  %0 = tensor.insert_slice %t0 into %t1 [2] [5] [1] : tensor<5xf32> into tensor<10xf32>
  return %0 : tensor<10xf32>
}

// -----

// This is a regression test. Make sure that there is no crash.

// CHECK-LABEL: func.func @regression_eliminate_equivalent_only(
func.func @regression_eliminate_equivalent_only(%sz: index, %p: index, %t0: tensor<?x16xi8>) -> tensor<?x16xi8> {
  %c0 = arith.constant 0 : index
  %c8 = arith.constant 8 : index
  %c16 = arith.constant 16 : index
  %27 = tensor.empty(%sz) : tensor<?x8xi32>
  %extracted_slice = tensor.extract_slice %27[0, 0] [%p, 8] [1, 1] : tensor<?x8xi32> to tensor<?x8xi32>
  %28 = scf.for %arg4 = %c0 to %c16 step %c8 iter_args(%arg5 = %t0) -> (tensor<?x16xi8>) {
    %inserted_slice = tensor.insert_slice %extracted_slice into %27[0, 0] [%sz, 8] [1, 1] : tensor<?x8xi32> into tensor<?x8xi32>
    %extracted_slice_2 = tensor.extract_slice %arg5[%p, %p] [%sz, 8] [1, 1] : tensor<?x16xi8> to tensor<?x8xi8>
    %32 = linalg.generic
        {indexing_maps = [affine_map<(d0, d1) -> (d0, d1)>, affine_map<(d0, d1) -> (d0, d1)>],
        iterator_types = ["parallel", "parallel"]}
        ins(%inserted_slice : tensor<?x8xi32>) outs(%extracted_slice_2 : tensor<?x8xi8>) {
    ^bb0(%in: i32, %out: i8):
      %tr = arith.trunci %in : i32 to i8
      linalg.yield %tr : i8
    } -> tensor<?x8xi8>
    %inserted_slice_3 = tensor.insert_slice %32 into %arg5[%p, %arg4] [%sz, 8] [1, 1] : tensor<?x8xi8> into tensor<?x16xi8>
    scf.yield %inserted_slice_3 : tensor<?x16xi8>
  }
  func.return %28 : tensor<?x16xi8>
}

// -----

// CHECK-LABEL: func.func @regression_multiple_insertion_points(
//   CHECK-NOT:   memref.alloc
func.func @regression_multiple_insertion_points(%t1: tensor<?x?xf32>) -> tensor<?x?xf32> {
  %empty = tensor.empty() : tensor<2x5xf32>
  %f0 = arith.constant 5.5 : f32
  %0 = "test.foo"() : () -> (index)
  %1 = "test.bar"() : () -> (index)
  %filled = linalg.fill ins(%f0 : f32) outs(%empty : tensor<2x5xf32>) -> tensor<2x5xf32>
  %2 = tensor.insert_slice %filled into %t1 [%0, %1] [2, 5] [1, 1] : tensor<2x5xf32> into tensor<?x?xf32>
  return %2 : tensor<?x?xf32>
}