1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
|
// RUN: mlir-opt %s -allow-unregistered-dialect -one-shot-bufferize="bufferize-function-boundaries=1" -split-input-file -verify-diagnostics
// expected-error @+2 {{cannot bufferize bodiless function that returns a tensor}}
// expected-error @+1 {{failed to bufferize op}}
func.func private @foo() -> tensor<?xf32>
// -----
// expected-error @+1 {{cannot bufferize a FuncOp with tensors and without a unique ReturnOp}}
func.func @swappy(%cond1 : i1, %cond2 : i1, %t1 : tensor<f32>, %t2 : tensor<f32>)
-> (tensor<f32>, tensor<f32>)
{
cf.cond_br %cond1, ^bb1, ^bb2
^bb1:
%T:2 = scf.if %cond2 -> (tensor<f32>, tensor<f32>) {
scf.yield %t1, %t2 : tensor<f32>, tensor<f32>
} else {
scf.yield %t2, %t1 : tensor<f32>, tensor<f32>
}
return %T#0, %T#1 : tensor<f32>, tensor<f32>
^bb2:
return %t2, %t1 : tensor<f32>, tensor<f32>
}
// -----
func.func @scf_if_not_equivalent(
%cond: i1, %t1: tensor<?xf32> {bufferization.writable = true},
%idx: index) -> tensor<?xf32> {
%r = scf.if %cond -> (tensor<?xf32>) {
scf.yield %t1 : tensor<?xf32>
} else {
// This buffer aliases, but it is not equivalent.
%t2 = tensor.extract_slice %t1 [%idx] [%idx] [1] : tensor<?xf32> to tensor<?xf32>
// expected-error @+1 {{operand #0 may return/yield a new buffer allocation}}
scf.yield %t2 : tensor<?xf32>
}
// expected-error @+1 {{operand #0 may return/yield a new buffer allocation}}
return %r : tensor<?xf32>
}
// -----
func.func @scf_if_not_aliasing(
%cond: i1, %t1: tensor<?xf32> {bufferization.writable = true},
%idx: index) -> f32 {
%r = scf.if %cond -> (tensor<?xf32>) {
scf.yield %t1 : tensor<?xf32>
} else {
// This buffer aliases.
%t2 = bufferization.alloc_tensor(%idx) : tensor<?xf32>
// expected-error @+1 {{operand #0 may return/yield a new buffer allocation}}
scf.yield %t2 : tensor<?xf32>
}
%f = tensor.extract %r[%idx] : tensor<?xf32>
return %f : f32
}
// -----
// expected-error @-3 {{expected callgraph to be free of circular dependencies}}
func.func @foo() {
call @bar() : () -> ()
return
}
func.func @bar() {
call @foo() : () -> ()
return
}
// -----
func.func @scf_for(%A : tensor<?xf32>,
%B : tensor<?xf32> {bufferization.writable = true},
%C : tensor<4xf32>,
%lb : index, %ub : index, %step : index)
-> (f32, f32)
{
%r0:2 = scf.for %i = %lb to %ub step %step iter_args(%tA = %A, %tB = %B)
-> (tensor<?xf32>, tensor<?xf32>)
{
%ttA = tensor.insert_slice %C into %tA[0][4][1] : tensor<4xf32> into tensor<?xf32>
%ttB = tensor.insert_slice %C into %tB[0][4][1] : tensor<4xf32> into tensor<?xf32>
// Throw a wrench in the system by swapping yielded values: this result in a
// ping-pong of values at each iteration on which we currently want to fail.
// expected-error @+1 {{Yield operand #0 is not equivalent to the corresponding iter bbArg}}
scf.yield %ttB, %ttA : tensor<?xf32>, tensor<?xf32>
}
%f0 = tensor.extract %r0#0[%step] : tensor<?xf32>
%f1 = tensor.extract %r0#1[%step] : tensor<?xf32>
return %f0, %f1: f32, f32
}
// -----
func.func @scf_while_non_equiv_condition(%arg0: tensor<5xi1>,
%arg1: tensor<5xi1>,
%idx: index) -> (i1, i1)
{
%r0, %r1 = scf.while (%w0 = %arg0, %w1 = %arg1)
: (tensor<5xi1>, tensor<5xi1>) -> (tensor<5xi1>, tensor<5xi1>) {
%condition = tensor.extract %w0[%idx] : tensor<5xi1>
// expected-error @+1 {{Condition arg #0 is not equivalent to the corresponding iter bbArg}}
scf.condition(%condition) %w1, %w0 : tensor<5xi1>, tensor<5xi1>
} do {
^bb0(%b0: tensor<5xi1>, %b1: tensor<5xi1>):
%pos = "dummy.some_op"() : () -> (index)
%val = "dummy.another_op"() : () -> (i1)
%1 = tensor.insert %val into %b0[%pos] : tensor<5xi1>
scf.yield %1, %b1 : tensor<5xi1>, tensor<5xi1>
}
%v0 = tensor.extract %r0[%idx] : tensor<5xi1>
%v1 = tensor.extract %r1[%idx] : tensor<5xi1>
return %v0, %v1 : i1, i1
}
// -----
func.func @scf_while_non_equiv_yield(%arg0: tensor<5xi1>,
%arg1: tensor<5xi1>,
%idx: index) -> (i1, i1)
{
%r0, %r1 = scf.while (%w0 = %arg0, %w1 = %arg1)
: (tensor<5xi1>, tensor<5xi1>) -> (tensor<5xi1>, tensor<5xi1>) {
%condition = tensor.extract %w0[%idx] : tensor<5xi1>
scf.condition(%condition) %w0, %w1 : tensor<5xi1>, tensor<5xi1>
} do {
^bb0(%b0: tensor<5xi1>, %b1: tensor<5xi1>):
%pos = "dummy.some_op"() : () -> (index)
%val = "dummy.another_op"() : () -> (i1)
%1 = tensor.insert %val into %b0[%pos] : tensor<5xi1>
// expected-error @+1 {{Yield operand #0 is not equivalent to the corresponding iter bbArg}}
scf.yield %b1, %1 : tensor<5xi1>, tensor<5xi1>
}
%v0 = tensor.extract %r0[%idx] : tensor<5xi1>
%v1 = tensor.extract %r1[%idx] : tensor<5xi1>
return %v0, %v1 : i1, i1
}
// -----
func.func private @fun_with_side_effects(%A: tensor<?xf32>)
func.func @foo(%A: tensor<?xf32> {bufferization.writable = true}) -> (tensor<?xf32>) {
call @fun_with_side_effects(%A) : (tensor<?xf32>) -> ()
return %A: tensor<?xf32>
}
func.func @scf_yield_needs_copy(%A : tensor<?xf32> {bufferization.writable = true}, %iters : index) {
%c0 = arith.constant 0 : index
%c1 = arith.constant 1 : index
%res = scf.for %arg0 = %c0 to %iters step %c1 iter_args(%bbarg = %A) -> (tensor<?xf32>) {
%r = func.call @foo(%A) : (tensor<?xf32>) -> (tensor<?xf32>)
// expected-error @+1 {{Yield operand #0 is not equivalent to the corresponding iter bbArg}}
scf.yield %r : tensor<?xf32>
}
call @fun_with_side_effects(%res) : (tensor<?xf32>) -> ()
return
}
// -----
func.func @extract_slice_fun(%A : tensor<?xf32> {bufferization.writable = true})
-> tensor<4xf32>
{
// This bufferizes to a pattern that the cross-function boundary pass needs to
// convert into a new memref argument at all call site; this may be either:
// - an externally created aliasing subview (if we want to allow aliasing
// function arguments).
// - a new alloc + copy (more expensive but does not create new function
// argument aliasing).
%r0 = tensor.extract_slice %A[0][4][1] : tensor<?xf32> to tensor<4xf32>
// expected-error @+1 {{operand #0 may return/yield a new buffer allocation}}
return %r0: tensor<4xf32>
}
// -----
func.func @scf_yield(%b : i1, %A : tensor<4xf32>, %B : tensor<4xf32>) -> tensor<4xf32>
{
%r = scf.if %b -> (tensor<4xf32>) {
scf.yield %A : tensor<4xf32>
} else {
scf.yield %B : tensor<4xf32>
}
// expected-error @+1 {{operand #0 may return/yield a new buffer allocation}}
return %r: tensor<4xf32>
}
// -----
func.func @unknown_op(%A : tensor<4xf32>) -> tensor<4xf32>
{
// expected-error: @+1 {{op was not bufferized}}
%r = "marklar"(%A) : (tensor<4xf32>) -> (tensor<4xf32>)
// expected-error @+1 {{operand #0 may return/yield a new buffer allocation}}
return %r: tensor<4xf32>
}
// -----
func.func @mini_test_case1() -> tensor<10x20xf32> {
%f0 = arith.constant 0.0 : f32
%t = bufferization.alloc_tensor() : tensor<10x20xf32>
%r = linalg.fill ins(%f0 : f32) outs(%t : tensor<10x20xf32>) -> tensor<10x20xf32>
// expected-error @+1 {{operand #0 may return/yield a new buffer allocation}}
return %r : tensor<10x20xf32>
}
// -----
func.func @main() -> tensor<4xi32> {
%r = scf.execute_region -> tensor<4xi32> {
%A = arith.constant dense<[1, 2, 3, 4]> : tensor<4xi32>
// expected-error @+1 {{operand #0 may return/yield a new buffer allocation}}
scf.yield %A: tensor<4xi32>
}
// expected-error @+1 {{operand #0 may return/yield a new buffer allocation}}
return %r: tensor<4xi32>
}
// -----
func.func @to_tensor_op_unsupported(%m: memref<?xf32>, %idx: index) -> (f32) {
// expected-error @+1 {{to_tensor ops without `restrict` are not supported by One-Shot Analysis}}
%0 = bufferization.to_tensor %m : memref<?xf32>
%1 = tensor.extract %0[%idx] : tensor<?xf32>
return %1 : f32
}
// -----
// expected-error @+2 {{failed to bufferize op}}
// expected-error @+1 {{cannot bufferize bodiless function that returns a tensor}}
func.func private @foo(%t : tensor<?xf32>) -> (f32, tensor<?xf32>, f32)
func.func @call_to_unknown_tensor_returning_func(%t : tensor<?xf32>) {
call @foo(%t) : (tensor<?xf32>) -> (f32, tensor<?xf32>, f32)
return
}
// -----
func.func @foo(%t : tensor<5xf32>) -> (tensor<5xf32>) {
%0 = bufferization.alloc_tensor() : tensor<5xf32>
// expected-error @+1 {{operand #0 may return/yield a new buffer allocation}}
return %0 : tensor<5xf32>
}
// Note: This function is not analyzed because there was an error in the
// previous one.
func.func @call_to_func_returning_non_equiv_tensor(%t : tensor<5xf32>) {
call @foo(%t) : (tensor<5xf32>) -> (tensor<5xf32>)
return
}
// -----
func.func @yield_alloc_dominance_test_1(%cst : f32, %idx : index,
%idx2 : index) -> f32 {
%0 = scf.execute_region -> tensor<?xf32> {
%1 = bufferization.alloc_tensor(%idx) : tensor<?xf32>
// expected-error @+1 {{operand #0 may return/yield a new buffer allocation}}
scf.yield %1 : tensor<?xf32>
}
%2 = tensor.insert %cst into %0[%idx] : tensor<?xf32>
%r = tensor.extract %2[%idx2] : tensor<?xf32>
return %r : f32
}
// -----
func.func @yield_alloc_dominance_test_2(%cst : f32, %idx : index,
%idx2 : index) -> f32 {
%1 = bufferization.alloc_tensor(%idx) : tensor<?xf32>
%0 = scf.execute_region -> tensor<?xf32> {
// This YieldOp returns a value that is defined in a parent block, thus
// no error.
scf.yield %1 : tensor<?xf32>
}
%2 = tensor.insert %cst into %0[%idx] : tensor<?xf32>
%r = tensor.extract %2[%idx2] : tensor<?xf32>
return %r : f32
}
// -----
func.func @copy_of_unranked_tensor(%t: tensor<*xf32>) -> tensor<*xf32> {
// Unranked tensor OpOperands always bufferize in-place. With this limitation,
// there is no way to bufferize this IR correctly.
// expected-error @+1 {{input IR has RaW conflict}}
func.call @maybe_writing_func(%t) : (tensor<*xf32>) -> ()
return %t : tensor<*xf32>
}
// This function may write to buffer(%ptr).
func.func private @maybe_writing_func(%ptr : tensor<*xf32>)
// -----
func.func @regression_scf_while() {
%false = arith.constant false
%8 = bufferization.alloc_tensor() : tensor<10x10xf32>
scf.while (%arg0 = %8) : (tensor<10x10xf32>) -> () {
scf.condition(%false)
} do {
// expected-error @+1 {{Yield operand #0 is not equivalent to the corresponding iter bbArg}}
scf.yield %8 : tensor<10x10xf32>
}
return
}
|