File: transform-ops.mlir

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (202 lines) | stat: -rw-r--r-- 7,656 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
// RUN: mlir-opt --test-transform-dialect-interpreter %s -split-input-file -verify-diagnostics | FileCheck %s

// Test One-Shot Bufferize.

transform.sequence failures(propagate) {
^bb0(%arg1: !transform.any_op):
  %0 = transform.structured.match ops{["func.func"]} in %arg1 : (!transform.any_op) -> !transform.any_op
  %1 = transform.bufferization.one_shot_bufferize %0 : (!transform.any_op) -> !transform.any_op
}

// CHECK-LABEL: func @test_function(
//  CHECK-SAME:     %[[A:.*]]: tensor<?xf32>
func.func @test_function(%A : tensor<?xf32>, %v : vector<4xf32>) -> (tensor<?xf32>) {
  %c0 = arith.constant 0 : index

  // CHECK: %[[A_memref:.*]] = bufferization.to_memref %[[A]]
  // CHECK: %[[dim:.*]] = memref.dim %[[A_memref]]
  // CHECK: %[[alloc:.*]] = memref.alloc(%[[dim]])
  // CHECK: memref.copy %[[A_memref]], %[[alloc]]
  // CHECK: vector.transfer_write %{{.*}}, %[[alloc]]
  // CHECK: %[[res_tensor:.*]] = bufferization.to_tensor %[[alloc]]
  %0 = vector.transfer_write %v, %A[%c0] : vector<4xf32>, tensor<?xf32>

  // CHECK: memref.dealloc %[[alloc]]
  // CHECK: return %[[res_tensor]]
  return %0 : tensor<?xf32>
}

// -----

// Emit linalg.copy instead of memref.copy.

transform.sequence failures(propagate) {
^bb0(%arg1: !transform.any_op):
  %0 = transform.structured.match ops{["func.func"]} in %arg1 : (!transform.any_op) -> !transform.any_op
  %1 = transform.bufferization.one_shot_bufferize %0 {memcpy_op = "linalg.copy"} : (!transform.any_op) -> !transform.any_op
}

// CHECK-LABEL: func @test_function(
//  CHECK-SAME:     %[[A:.*]]: tensor<?xf32>
//   CHECK-NOT:   memref.copy
func.func @test_function(%A : tensor<?xf32>, %v : vector<4xf32>) -> (tensor<?xf32>) {
  %c0 = arith.constant 0 : index

  // CHECK: %[[A_memref:.*]] = bufferization.to_memref %[[A]]
  // CHECK: %[[dim:.*]] = memref.dim %[[A_memref]]
  // CHECK: %[[alloc:.*]] = memref.alloc(%[[dim]])
  // CHECK: linalg.copy ins(%[[A_memref]] : memref<{{.*}}>) outs(%[[alloc]]
  // CHECK: vector.transfer_write %{{.*}}, %[[alloc]]
  // CHECK: %[[res_tensor:.*]] = bufferization.to_tensor %[[alloc]]
  %0 = vector.transfer_write %v, %A[%c0] : vector<4xf32>, tensor<?xf32>

  // CHECK: memref.dealloc %[[alloc]]
  // CHECK: return %[[res_tensor]]
  return %0 : tensor<?xf32>
}

// -----

// Test analysis of One-Shot Bufferize only.

transform.sequence failures(propagate) {
^bb0(%arg1: !transform.any_op):
  %0 = transform.structured.match ops{["func.func"]} in %arg1 : (!transform.any_op) -> !transform.any_op
  %1 = transform.bufferization.one_shot_bufferize %0
      {test_analysis_only = true} : (!transform.any_op) -> !transform.any_op
}

// CHECK-LABEL: func @test_function_analysis(
//  CHECK-SAME:     %[[A:.*]]: tensor<?xf32>
func.func @test_function_analysis(%A : tensor<?xf32>, %v : vector<4xf32>) -> (tensor<?xf32>) {
  %c0 = arith.constant 0 : index
  // CHECK: vector.transfer_write
  // CHECK-SAME: {__inplace_operands_attr__ = ["none", "false", "none"]}
  // CHECK-SAME: tensor<?xf32>
  %0 = vector.transfer_write %v, %A[%c0] : vector<4xf32>, tensor<?xf32>
  return %0 : tensor<?xf32>
}

// -----

// Test One-Shot Bufferize transform failure with an unknown op. This would be
// allowed with `allow_unknown_ops`.

transform.sequence failures(propagate) {
^bb0(%arg1: !transform.any_op):
  %0 = transform.structured.match ops{["func.func"]} in %arg1 : (!transform.any_op) -> !transform.any_op
  // expected-error @+1 {{bufferization failed}}
  %1 = transform.bufferization.one_shot_bufferize %0 : (!transform.any_op) -> !transform.any_op
}

func.func @test_unknown_op_failure() -> (tensor<?xf32>) {
  // expected-error @+1 {{op was not bufferized}}
  %0 = "test.dummy_op"() : () -> (tensor<?xf32>)
  return %0 : tensor<?xf32>
}

// -----

transform.sequence failures(propagate) {
^bb0(%arg1: !transform.any_op):
  // %arg1 is the module
  %0 = transform.bufferization.one_shot_bufferize %arg1 : (!transform.any_op) -> !transform.any_op
}

module {
  // CHECK-LABEL: func @test_function(
  //  CHECK-SAME:     %[[A:.*]]: tensor<?xf32>
  func.func @test_function(%A : tensor<?xf32>, %v : vector<4xf32>) -> (tensor<?xf32>) {
    %c0 = arith.constant 0 : index

    // CHECK: %[[A_memref:.*]] = bufferization.to_memref %[[A]]
    // CHECK: %[[dim:.*]] = memref.dim %[[A_memref]]
    // CHECK: %[[alloc:.*]] = memref.alloc(%[[dim]])
    // CHECK: memref.copy %[[A_memref]], %[[alloc]]
    // CHECK: vector.transfer_write %{{.*}}, %[[alloc]]
    // CHECK: %[[res_tensor:.*]] = bufferization.to_tensor %[[alloc]]
    %0 = vector.transfer_write %v, %A[%c0] : vector<4xf32>, tensor<?xf32>

    // CHECK: memref.dealloc %[[alloc]]
    // CHECK: return %[[res_tensor]]
    return %0 : tensor<?xf32>
  }
}

// -----

// Test we use identity layout at function boundaries.

transform.sequence failures(propagate) {
  ^bb0(%arg1: !transform.any_op):
  %0 = transform.bufferization.one_shot_bufferize layout{IdentityLayoutMap} %arg1
    { bufferize_function_boundaries = true } : (!transform.any_op) -> !transform.any_op
}

// CHECK: func.func @matmul(
// CHECK-SAME:  %[[A:.*]]: memref<12x9xf32>,
// CHECK-SAME:  %[[B:.*]]: memref<9x6xf32>,
// CHECK-SAME:  %[[C:.*]]: memref<12x6xf32>) -> memref<12x6xf32> {
func.func @matmul(%A: tensor<12x9xf32>, %B: tensor<9x6xf32>, %C: tensor<12x6xf32>) -> tensor<12x6xf32> {
  // CHECK: linalg.matmul ins(%[[A]], %[[B]] : memref<12x9xf32>, memref<9x6xf32>) outs(%[[C]] : memref<12x6xf32>)
  %D = linalg.matmul ins(%A, %B: tensor<12x9xf32>, tensor<9x6xf32>) outs(%C: tensor<12x6xf32>) -> tensor<12x6xf32>
  // CHECK: return %[[C]] : memref<12x6xf32>
  return %D : tensor<12x6xf32>
}

// -----

transform.sequence failures(propagate) {
  ^bb0(%arg1: !transform.any_op):
    %0 = transform.structured.match ops{["tensor.empty"]} in %arg1 : (!transform.any_op) -> !transform.any_op
    %1 = transform.cast %0 : !transform.any_op to !transform.op<"tensor.empty">
    transform.bufferization.empty_tensor_to_alloc_tensor %1 : (!transform.op<"tensor.empty">) -> !transform.op<"bufferization.alloc_tensor">
}

// Expect `bufferization.empty_tensor_to_alloc_tensor` to replace the tensor.empty.
func.func @empty_to_tensor_alloc() -> tensor<2x2xf32> {
  // CHECK: bufferization.alloc_tensor
  %0 = tensor.empty() : tensor<2x2xf32>
  return %0 : tensor<2x2xf32>
}

// -----

transform.sequence failures(propagate) {
^bb0(%arg1: !transform.any_op):
  %0 = transform.structured.match ops{["func.func"]} in %arg1 : (!transform.any_op) -> !transform.any_op
  transform.bufferization.eliminate_empty_tensors %0 : !transform.any_op
}

// CHECK-LABEL: func @empty_tensor_elimination(
//       CHECK:   tensor.extract_slice
//       CHECK:   linalg.fill
//       CHECK:   tensor.insert_slice
func.func @empty_tensor_elimination(
    %t: tensor<10xf32>, %f: f32) -> tensor<10xf32> {
  %0 = tensor.empty() : tensor<5xf32>
  %1 = linalg.fill ins(%f : f32) outs(%0 : tensor<5xf32>) -> tensor<5xf32>
  %2 = tensor.insert_slice %1 into %t [1][5][1]
      : tensor<5xf32> into tensor<10xf32>
  return %2 : tensor<10xf32>
}

// -----

transform.sequence failures(propagate) {
^bb0(%arg1: !transform.any_op):
  %0 = transform.structured.match ops{["func.func"]} in %arg1 : (!transform.any_op) -> !transform.any_op
  transform.bufferization.buffer_loop_hoisting %0 : !transform.any_op
}

// CHECK-LABEL: func @buffer_loop_hoisting(
//       CHECK:   memref.alloca
//       CHECK:   scf.for
//       CHECK:     memref.store
func.func @buffer_loop_hoisting(%lb: index, %ub: index, %step: index, %f: f32, %pos: index) {
  scf.for %iv = %lb to %ub step %step {
    %0 = memref.alloca() : memref<5xf32>
    memref.store %f, %0[%pos] : memref<5xf32>
  }
  return
}