1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
|
// RUN: mlir-opt --test-transform-dialect-interpreter --split-input-file -canonicalize -cse --verify-diagnostics %s
func.func @map_nested_forall_to_threads_not_gpu_launch() -> () {
%1 = tensor.empty() : tensor<4xf32>
return
}
transform.sequence failures(propagate) {
^bb0(%arg0: !transform.any_op):
%funcop = transform.structured.match ops{["tensor.empty"]} in %arg0 : (!transform.any_op) -> !transform.any_op
// expected-error @below {{Given target is not a gpu.launch}}
%1 = transform.gpu.map_nested_forall_to_threads %funcop block_dims = [1, 1, 1] : (!transform.any_op) -> !transform.any_op
}
// -----
func.func @map_nested_forall_to_threads_excessive_threads(%x: memref<2 x 32 x f32>, %y: memref<2 x 32 x f32>, %t: memref<32 x f32>, %alpha : f32, %stream : !gpu.async.token) -> memref<2 x 32 x f32> {
%one = arith.constant 1 : index
%c900 = arith.constant 900 : index
%c9 = arith.constant 9 : index
%c7 = arith.constant 7 : index
%name = gpu.launch async[%stream] blocks(%arg3, %arg4, %arg5) in (%arg9 = %one, %arg10 = %one, %arg11 = %one)
threads(%arg6, %arg7, %arg8) in (%arg12 = %one, %arg13 = %one, %arg14 = %one)
{
scf.forall (%i, %j) in (%c7, %c900) {
%4 = memref.load %x[%i, %j] : memref<2 x 32 x f32>
%5 = memref.load %y[%i, %j] : memref<2 x 32 x f32>
%6 = math.fma %alpha, %4, %5 : f32
memref.store %6, %y[%i, %j] : memref<2 x 32 x f32>
} { mapping = [#gpu.thread<y>, #gpu.thread<x>] }
gpu.terminator
}
%name2 = gpu.launch async[%stream] blocks(%arg3, %arg4, %arg5) in (%arg9 = %one, %arg10 = %one, %arg11 = %one)
threads(%arg6, %arg7, %arg8) in (%arg12 = %one, %arg13 = %one, %arg14 = %one)
{
scf.forall (%i, %j) in (%c7, %c9) {
%4 = memref.load %x[%i, %j] : memref<2 x 32 x f32>
%5 = memref.load %y[%i, %j] : memref<2 x 32 x f32>
%6 = math.fma %alpha, %4, %5 : f32
memref.store %6, %y[%i, %j] : memref<2 x 32 x f32>
} { mapping = [#gpu.thread<y>, #gpu.thread<x>] }
gpu.terminator
}
return %y : memref<2 x 32 x f32>
}
transform.sequence failures(propagate) {
^bb1(%arg0: !transform.any_op):
%funcop = transform.structured.match ops{["gpu.launch"]} in %arg0 : (!transform.any_op) -> !transform.any_op
// expected-error @below {{Trying to launch a GPU kernel with grid_dims = (1, 1, 1) block_dims = (1200, 9, 1). It is larger than the limits.}}
// expected-note @below {{"block_dims" is too large}}
transform.gpu.map_nested_forall_to_threads %funcop block_dims = [1200, 9, 1] : (!transform.any_op) -> !transform.any_op
}
// -----
func.func @map_nested_forall_to_threads_fewer_threads(%x: memref<2 x 32 x f32>, %y: memref<2 x 32 x f32>, %t: memref<32 x f32>, %alpha : f32, %stream : !gpu.async.token) -> memref<2 x 32 x f32> {
%one = arith.constant 1 : index
%c900 = arith.constant 900 : index
%c9 = arith.constant 9 : index
%c7 = arith.constant 7 : index
%name = gpu.launch async[%stream] blocks(%arg3, %arg4, %arg5) in (%arg9 = %one, %arg10 = %one, %arg11 = %one)
threads(%arg6, %arg7, %arg8) in (%arg12 = %one, %arg13 = %one, %arg14 = %one)
{
scf.forall (%i, %j) in (%c7, %c900) {
%4 = memref.load %x[%i, %j] : memref<2 x 32 x f32>
%5 = memref.load %y[%i, %j] : memref<2 x 32 x f32>
%6 = math.fma %alpha, %4, %5 : f32
memref.store %6, %y[%i, %j] : memref<2 x 32 x f32>
} { mapping = [#gpu.thread<y>, #gpu.thread<x>] }
gpu.terminator
}
%name2 = gpu.launch async[%stream] blocks(%arg3, %arg4, %arg5) in (%arg9 = %one, %arg10 = %one, %arg11 = %one)
threads(%arg6, %arg7, %arg8) in (%arg12 = %one, %arg13 = %one, %arg14 = %one)
{
scf.forall (%i, %j) in (%c7, %c9) {
%4 = memref.load %x[%i, %j] : memref<2 x 32 x f32>
%5 = memref.load %y[%i, %j] : memref<2 x 32 x f32>
%6 = math.fma %alpha, %4, %5 : f32
memref.store %6, %y[%i, %j] : memref<2 x 32 x f32>
} { mapping = [#gpu.thread<y>, #gpu.thread<x>] }
gpu.terminator
}
return %y : memref<2 x 32 x f32>
}
transform.sequence failures(propagate) {
^bb1(%arg0: !transform.any_op):
%funcop = transform.structured.match ops{["gpu.launch"]} in %arg0 : (!transform.any_op) -> !transform.any_op
// expected-error @below {{Trying to map to fewer GPU threads than loop iterations but overprovisioning is not yet supported. Try additional tiling of the before mapping or map to more threads.}}
transform.gpu.map_nested_forall_to_threads %funcop block_dims = [128, 4, 1] : (!transform.any_op) -> !transform.any_op
}
// -----
func.func @map_nested_forall_to_threads_dynamic_trip_count(%x: memref<2 x 32 x f32>, %y: memref<2 x 32 x f32>, %t: memref<32 x f32>, %alpha : f32, %stream : !gpu.async.token, %c9 : index, %c7 : index) -> memref<2 x 32 x f32> {
%one = arith.constant 1 : index
%c900 = arith.constant 900 : index
%name = gpu.launch async[%stream] blocks(%arg3, %arg4, %arg5) in (%arg9 = %one, %arg10 = %one, %arg11 = %one)
threads(%arg6, %arg7, %arg8) in (%arg12 = %one, %arg13 = %one, %arg14 = %one)
{
scf.forall (%i, %j) in (%c7, %c900) {
%4 = memref.load %x[%i, %j] : memref<2 x 32 x f32>
%5 = memref.load %y[%i, %j] : memref<2 x 32 x f32>
%6 = math.fma %alpha, %4, %5 : f32
memref.store %6, %y[%i, %j] : memref<2 x 32 x f32>
} { mapping = [#gpu.thread<y>, #gpu.thread<x>] }
gpu.terminator
}
return %y : memref<2 x 32 x f32>
}
transform.sequence failures(propagate) {
^bb1(%arg0: !transform.any_op):
%funcop = transform.structured.match ops{["gpu.launch"]} in %arg0 : (!transform.any_op) -> !transform.any_op
// expected-error @below {{unsupported dynamic sizes}}
transform.gpu.map_nested_forall_to_threads %funcop block_dims = [128, 4, 1] : (!transform.any_op) -> !transform.any_op
}
// -----
func.func @map_nested_forall_to_threads_not_buffer(%x: tensor<32x32xf32>, %y: tensor<32x32xf32>, %z: tensor<32x32xf32>, %stream : !gpu.async.token) {
%one = arith.constant 1 : index
%name = gpu.launch async[%stream] blocks(%arg3, %arg4, %arg5) in (%arg9 = %one, %arg10 = %one, %arg11 = %one)
threads(%arg6, %arg7, %arg8) in (%arg12 = %one, %arg13 = %one, %arg14 = %one)
{
%t = linalg.matmul ins(%x, %y: tensor<32x32xf32>, tensor<32x32xf32>) outs(%z : tensor<32x32xf32>) -> tensor<32x32xf32>
gpu.terminator
}
return
}
transform.sequence failures(propagate) {
^bb1(%arg0: !transform.any_op):
%matmul = transform.structured.match ops{["linalg.matmul"]} in %arg0 : (!transform.any_op) -> !transform.any_op
%forall, %tiled = transform.structured.tile_to_forall_op %matmul num_threads [10, 20, 30] (mapping = [ #gpu.thread<y>, #gpu.thread<x>, #gpu.thread<z> ] )
: (!transform.any_op) -> (!transform.any_op, !transform.any_op)
%funcop = transform.structured.match ops{["gpu.launch"]} in %arg0 : (!transform.any_op) -> !transform.any_op
// expected-error @below {{only bufferized scf.forall can be mapped}}
transform.gpu.map_nested_forall_to_threads %funcop block_dims = [128, 4, 1] : (!transform.any_op) -> !transform.any_op
}
// -----
func.func @map_forall_to_blocks_not_gpu_launch() -> () {
// expected-note @below {{when applied to this payload op}}
%1 = tensor.empty() : tensor<4xf32>
return
}
transform.sequence failures(propagate) {
^bb0(%arg0: !transform.any_op):
%funcop = transform.structured.match ops{["tensor.empty"]} in %arg0 : (!transform.any_op) -> !transform.any_op
// expected-error @below {{Given target is not gpu.launch}}
%1 = transform.gpu.map_forall_to_blocks %funcop : (!transform.any_op) -> !transform.any_op
}
// -----
func.func @map_forall_to_blocks_not_unique(%x: memref<2 x 32 x f32>, %y: memref<2 x 32 x f32>, %t: memref<32 x f32>, %alpha : f32, %stream : !gpu.async.token) -> memref<2 x 32 x f32> {
%one = arith.constant 1 : index
%c900 = arith.constant 900 : index
%c9 = arith.constant 9 : index
%c7 = arith.constant 7 : index
// expected-note @below {{when applied to this payload op}}
%name = gpu.launch async[%stream] blocks(%arg3, %arg4, %arg5) in (%arg9 = %one, %arg10 = %one, %arg11 = %one)
threads(%arg6, %arg7, %arg8) in (%arg12 = %one, %arg13 = %one, %arg14 = %one)
{
scf.forall (%i, %j) in (%c7, %c900) {
%4 = memref.load %x[%i, %j] : memref<2 x 32 x f32>
%5 = memref.load %y[%i, %j] : memref<2 x 32 x f32>
%6 = math.fma %alpha, %4, %5 : f32
memref.store %6, %y[%i, %j] : memref<2 x 32 x f32>
} { mapping = [#gpu.thread<y>, #gpu.thread<x>] }
scf.forall (%i, %j) in (%c7, %c9) {
%4 = memref.load %x[%i, %j] : memref<2 x 32 x f32>
%5 = memref.load %y[%i, %j] : memref<2 x 32 x f32>
%6 = math.fma %alpha, %4, %5 : f32
memref.store %6, %y[%i, %j] : memref<2 x 32 x f32>
} { mapping = [#gpu.thread<y>, #gpu.thread<x>] }
gpu.terminator
}
return %y : memref<2 x 32 x f32>
}
transform.sequence failures(propagate) {
^bb0(%arg0: !transform.any_op):
%funcop = transform.structured.match ops{["gpu.launch"]} in %arg0 : (!transform.any_op) -> !transform.any_op
// expected-error @below {{could not find a unique topLevel scf.forall}}
%1 = transform.gpu.map_forall_to_blocks %funcop : (!transform.any_op) -> !transform.any_op
}
// -----
// expected-note @below {{when applied to this payload op}}
func.func @map_forall_to_blocks_large_loop(%x: memref<2 x 32 x f32>, %y: memref<2 x 32 x f32>, %t: memref<32 x f32>, %alpha : f32, %stream : !gpu.async.token) -> memref<2 x 32 x f32> {
%one = arith.constant 1 : index
%c65537 = arith.constant 65536 : index
%c9 = arith.constant 9 : index
%c7 = arith.constant 7 : index
scf.forall (%i, %j) in (%c7, %c65537) {
%4 = memref.load %x[%i, %j] : memref<2 x 32 x f32>
%5 = memref.load %y[%i, %j] : memref<2 x 32 x f32>
%6 = math.fma %alpha, %4, %5 : f32
memref.store %6, %y[%i, %j] : memref<2 x 32 x f32>
} { mapping = [#gpu.thread<x>, #gpu.thread<y>] }
scf.forall (%i, %j) in (%c7, %c9) {
%4 = memref.load %x[%i, %j] : memref<2 x 32 x f32>
%5 = memref.load %y[%i, %j] : memref<2 x 32 x f32>
%6 = math.fma %alpha, %4, %5 : f32
memref.store %6, %y[%i, %j] : memref<2 x 32 x f32>
} { mapping = [#gpu.thread<y>, #gpu.thread<x>] }
return %y : memref<2 x 32 x f32>
}
transform.sequence failures(propagate) {
^bb0(%arg0: !transform.any_op):
%funcop = transform.structured.match ops{["func.func"]} in %arg0 : (!transform.any_op) -> !transform.any_op
// expected-error @below {{could not find a unique topLevel scf.forall}}
%1 = transform.gpu.map_forall_to_blocks %funcop { generate_gpu_launch } : (!transform.any_op) -> !transform.any_op
}
// -----
func.func @map_forall_to_blocks_large_loop(%x: memref<2 x 32 x f32>, %y: memref<2 x 32 x f32>, %t: memref<32 x f32>, %alpha : f32, %stream : !gpu.async.token) -> memref<2 x 32 x f32> {
%one = arith.constant 1 : index
%c65535 = arith.constant 65535 : index
scf.forall (%i, %j) in (%c65535, %c65535) {
%4 = memref.load %x[%i, %j] : memref<2 x 32 x f32>
%5 = memref.load %y[%i, %j] : memref<2 x 32 x f32>
%6 = math.fma %alpha, %4, %5 : f32
memref.store %6, %y[%i, %j] : memref<2 x 32 x f32>
} { mapping = [#gpu.block<x>, #gpu.block<y>] }
return %y : memref<2 x 32 x f32>
}
transform.sequence failures(propagate) {
^bb0(%arg0: !transform.any_op):
%funcop = transform.structured.match ops{["func.func"]} in %arg0 : (!transform.any_op) -> !transform.any_op
// expected-error @below {{Trying to launch a GPU kernel with grid_dims = (65535, 65535, 1) block_dims = (1, 1, 1). It is larger than the limits.}}
%1 = transform.gpu.map_forall_to_blocks %funcop generate_gpu_launch : (!transform.any_op) -> !transform.any_op
}
// -----
!type = memref<32x32xf32>
func.func @saxpy2d_singleloop(%x: !type, %y: !type, %stream : !gpu.async.token) -> !type {
%c32 = arith.constant 32 : index
%one = arith.constant 1 : index
%name = gpu.launch async[%stream] blocks(%arg3, %arg4, %arg5) in (%arg9 = %one, %arg10 = %one, %arg11 = %one)
threads(%arg6, %arg7, %arg8) in (%arg12 = %one, %arg13 = %one, %arg14 = %one)
{
scf.forall (%i, %j) in (%c32, %c32) {
%4 = memref.load %x[%i, %j] : !type
%5 = memref.load %y[%i, %j] : !type
%6 = arith.mulf %4, %5 : f32
memref.store %6, %y[%i, %j] : !type
} { mapping = [#gpu.thread<x>, #gpu.thread<x>] }
gpu.terminator
}
return %y : !type
}
transform.sequence failures(propagate) {
^bb1(%arg0: !transform.any_op):
%funcop = transform.structured.match ops{["gpu.launch"]} in %arg0 : (!transform.any_op) -> !transform.any_op
// expected-error @below {{duplicated attribute, cannot map different loops to the same processor}}
transform.gpu.map_nested_forall_to_threads %funcop block_dims = [32, 32, 1] : (!transform.any_op) -> !transform.any_op
}
|