File: conv-interface-invalid.mlir

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (206 lines) | stat: -rw-r--r-- 8,537 bytes parent folder | download | duplicates (14)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
// RUN: mlir-opt -split-input-file -verify-diagnostics %s

func.func @test_conv_op_not_linalg_op(%arg0 : tensor<?xf32>, %arg1 : tensor<?xf32>,
    %arg2 : tensor<?xf32>) -> tensor<?xf32> {
  // expected-error @+1 {{expected a LinalgOp}}
  %0 = "test.conv_op_not_linalg_op"(%arg0, %arg1, %arg2)
      : (tensor<?xf32>, tensor<?xf32>, tensor<?xf32>) -> tensor<?xf32>
  return %0 : tensor<?xf32>
}

// -----

// Check for number of operands being >= 2.
#map = affine_map<(d0) -> (d0)>
func.func @test_conv_op_wrong_num_operands(%arg0 : tensor<?xf32>,
    %arg1 : tensor<?xf32>) -> tensor<?xf32> {
  // expected-error @+1 {{expected op with 2 inputs and 1 output}}
  %0 = test.linalg_conv_op {
      indexing_maps = [#map, #map],
      iterator_types = [#test.iterator_type<parallel>]}
      ins(%arg0 : tensor<?xf32>) outs(%arg1 : tensor<?xf32>) {
      ^bb0(%arg2 : f32, %arg3 : f32):
         linalg.yield  %arg3 : f32
      } -> tensor<?xf32>
  return %0 : tensor<?xf32>
}

// -----

func.func @test_conv_op_wrong_input_indexing_map1(%arg0 : tensor<?xf32>,
    %arg1 : tensor<?xf32>, %arg2 : tensor<?xf32>) -> tensor<?xf32> {
  // expected-error @+1 {{unexpected input index map for convolution}}
  %0 = test.linalg_conv_op {
      indexing_maps = [affine_map<(d0, d1) -> (d0 * 2)>,
                       affine_map<(d0, d1) -> (d1)>,
                       affine_map<(d0, d1) -> (d0)>],
      iterator_types = [#test.iterator_type<parallel>,
                        #test.iterator_type<reduction>]}
      ins(%arg0, %arg1 : tensor<?xf32>, tensor<?xf32>)
      outs(%arg2 : tensor<?xf32>) {
      ^bb0(%arg3 : f32, %arg4 : f32, %arg5 : f32):
         linalg.yield %arg5 : f32
      } -> tensor<?xf32>
  return %0 : tensor<?xf32>
}

// -----

func.func @test_conv_op_wrong_input_indexing_map2(%arg0 : tensor<?x?xf32>,
    %arg1 : tensor<?xf32>, %arg2 : tensor<?xf32>) -> tensor<?xf32> {
  // expected-error @+1 {{unexpected input index map for convolution}}
  %0 = test.linalg_conv_op {
      indexing_maps = [affine_map<(d0, d1) -> (d0 + d1, d0)>,
                       affine_map<(d0, d1) -> (d1)>,
                       affine_map<(d0, d1) -> (d0)>],
      iterator_types = [#test.iterator_type<parallel>,
                        #test.iterator_type<reduction>]}
      ins(%arg0, %arg1 : tensor<?x?xf32>, tensor<?xf32>)
      outs(%arg2 : tensor<?xf32>) {
      ^bb0(%arg3 : f32, %arg4 : f32, %arg5 : f32):
         linalg.yield %arg5 : f32
      } -> tensor<?xf32>
  return %0 : tensor<?xf32>
}

// -----

func.func @test_conv_op_filter_index_map_not_projection(%arg0 : tensor<?xf32>,
    %arg1 : tensor<?xf32>, %arg2 : tensor<?xf32>) -> tensor<?xf32> {
  // expected-error @+1 {{expected output/filter indexing maps to be projected permutations}}
  %0 = test.linalg_conv_op {
      indexing_maps = [affine_map<(d0, d1) -> (d1)>,
                       affine_map<(d0, d1) -> (d1 + d0)>,
                       affine_map<(d0, d1) -> (d0)>],
      iterator_types = [#test.iterator_type<parallel>,
                        #test.iterator_type<reduction>]}
      ins(%arg0, %arg1 : tensor<?xf32>, tensor<?xf32>)
      outs(%arg2 : tensor<?xf32>) {
      ^bb0(%arg3 : f32, %arg4 : f32, %arg5 : f32):
         linalg.yield %arg5 : f32
      } -> tensor<?xf32>
  return %0 : tensor<?xf32>
}

// -----

func.func @test_conv_op_output_index_map_not_projection(%arg0 : tensor<?xf32>,
    %arg1 : tensor<?xf32>, %arg2 : tensor<?xf32>) -> tensor<?xf32> {
  // expected-error @+1 {{expected output/filter indexing maps to be projected permutations}}
  %0 = test.linalg_conv_op {
      indexing_maps = [affine_map<(d0, d1) -> (d0)>,
                       affine_map<(d0, d1) -> (d1)>,
                       affine_map<(d0, d1) -> (d0 + d1)>],
      iterator_types = [#test.iterator_type<parallel>,
                        #test.iterator_type<parallel>]}
      ins(%arg0, %arg1 : tensor<?xf32>, tensor<?xf32>)
      outs(%arg2 : tensor<?xf32>) {
      ^bb0(%arg3 : f32, %arg4 : f32, %arg5 : f32):
         linalg.yield %arg5 : f32
      } -> tensor<?xf32>
  return %0 : tensor<?xf32>
}

// -----

// Convolution op illegal if a loop dimension is used to access
// output, filter and is convolved.
func.func @test_conv_op_output_filter_convolved(%arg0 : tensor<?xf32>,
    %arg1 : tensor<?xf32>, %arg2 : tensor<?x?xf32>) -> tensor<?x?xf32> {
  // expected-error @+1 {{unexpected loop dimension for convolution op}}
  %0 = test.linalg_conv_op {
      indexing_maps = [affine_map<(d0, d1) -> (d0 + d1)>,
                       affine_map<(d0, d1) -> (d1)>,
                       affine_map<(d0, d1) -> (d0, d1)>],
      iterator_types = [#test.iterator_type<parallel>,
                        #test.iterator_type<parallel>]}
      ins(%arg0, %arg1 : tensor<?xf32>, tensor<?xf32>)
      outs(%arg2 : tensor<?x?xf32>) {
      ^bb0(%arg3 : f32, %arg4 : f32, %arg5 : f32):
         linalg.yield %arg5 : f32
      } -> tensor<?x?xf32>
  return %0 : tensor<?x?xf32>
}

// -----

// Convolution op illegal if a loop dimension is used only in the output.
func.func @test_conv_op_output_only_dim(%arg0 : tensor<?xf32>,
    %arg1 : tensor<?xf32>, %arg2 : tensor<?x?xf32>) -> tensor<?x?xf32> {
  // expected-error @+1 {{unexpected loop dimension for convolution op}}
  %0 = test.linalg_conv_op {
      indexing_maps = [affine_map<(d0, d1, d2) -> (d0 + d1)>,
                       affine_map<(d0, d1, d2) -> (d1)>,
                       affine_map<(d0, d1, d2) -> (d0, d2)>],
      iterator_types = [#test.iterator_type<parallel>,
                        #test.iterator_type<reduction>,
                        #test.iterator_type<parallel>]}
      ins(%arg0, %arg1 : tensor<?xf32>, tensor<?xf32>)
      outs(%arg2 : tensor<?x?xf32>) {
      ^bb0(%arg3 : f32, %arg4 : f32, %arg5 : f32):
         linalg.yield %arg5 : f32
      } -> tensor<?x?xf32>
  return %0 : tensor<?x?xf32>
}

// -----

// Convolution op illegal if a loop dimension is used only in the filter.
func.func @test_conv_op_filter_only_dim(%arg0 : tensor<?xf32>,
    %arg1 : tensor<?x?xf32>, %arg2 : tensor<?xf32>) -> tensor<?xf32> {
  // expected-error @+1 {{unexpected loop dimension for convolution op}}
  %0 = test.linalg_conv_op {
      indexing_maps = [affine_map<(d0, d1, d2) -> (d0 + d1)>,
                       affine_map<(d0, d1, d2) -> (d1, d2)>,
                       affine_map<(d0, d1, d2) -> (d0)>],
      iterator_types = [#test.iterator_type<parallel>,
                        #test.iterator_type<reduction>,
                        #test.iterator_type<reduction>]}
      ins(%arg0, %arg1 : tensor<?xf32>, tensor<?x?xf32>)
      outs(%arg2 : tensor<?xf32>) {
      ^bb0(%arg3 : f32, %arg4 : f32, %arg5 : f32):
         linalg.yield %arg5 : f32
      } -> tensor<?xf32>
  return %0 : tensor<?xf32>
}

// -----

// Convolution op illegal if a loop dimension is used only in the input.
func.func @test_conv_op_input_only_dim(%arg0 : tensor<?x?xf32>,
    %arg1 : tensor<?xf32>, %arg2 : tensor<?xf32>) -> tensor<?xf32> {
  // expected-error @+1 {{unexpected loop dimension for convolution op}}
  %0 = test.linalg_conv_op {
      indexing_maps = [affine_map<(d0, d1, d2) -> (d0 + d1, d2)>,
                       affine_map<(d0, d1, d2) -> (d1)>,
                       affine_map<(d0, d1, d2) -> (d0)>],
      iterator_types = [#test.iterator_type<parallel>,
                        #test.iterator_type<reduction>,
                        #test.iterator_type<reduction>]}
      ins(%arg0, %arg1 : tensor<?x?xf32>, tensor<?xf32>)
      outs(%arg2 : tensor<?xf32>) {
      ^bb0(%arg3 : f32, %arg4 : f32, %arg5 : f32):
         linalg.yield %arg5 : f32
      } -> tensor<?xf32>
  return %0 : tensor<?xf32>
}

// -----

// Convolution op illegal if a loop dimension accessing output is not parallel.
func.func @test_conv_op_non_output_access_loop_parallel(%arg0 : tensor<?xf32>,
    %arg1 : tensor<?xf32>, %arg2 : tensor<?xf32>) -> tensor<?xf32> {
  // expected-error @+1 {{expected all iterators not used to access outputs to be reduction}}
  %0 = test.linalg_conv_op  {
      indexing_maps = [affine_map<(d0, d1) -> (d0 + d1)>,
                       affine_map<(d0, d1) -> (d1)>,
                       affine_map<(d0, d1) -> (d0)>],
      iterator_types = [#test.iterator_type<parallel>,
                        #test.iterator_type<parallel>]}
      ins(%arg0, %arg1 : tensor<?xf32>, tensor<?xf32>)
      outs(%arg2 : tensor<?xf32>) {
      ^bb0(%arg3 : f32, %arg4 : f32, %arg5 : f32):
         linalg.yield %arg5 : f32
      } -> tensor<?xf32>
  return %0 : tensor<?xf32>
}