1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
|
// RUN: mlir-opt %s -split-input-file -allow-unregistered-dialect -pass-pipeline="builtin.module(func.func(linalg-detensorize))" | FileCheck %s
#map0 = affine_map<() -> ()>
#attrs = {
indexing_maps = [#map0, #map0, #map0],
iterator_types = []
}
func.func @main() -> (tensor<i32>) attributes {} {
%c0 = arith.constant 0 : i32
%0 = tensor.from_elements %c0 : tensor<i32>
%c10 = arith.constant 10 : i32
%1 = tensor.from_elements %c10 : tensor<i32>
cf.br ^bb1(%0 : tensor<i32>)
^bb1(%2: tensor<i32>): // 2 preds: ^bb0, ^bb2
%3 = tensor.empty() : tensor<i1>
%4 = linalg.generic #attrs
ins(%2, %1 : tensor<i32>, tensor<i32>)
outs(%3 : tensor<i1>) {
^bb0(%arg0: i32, %arg1: i32, %arg2: i1):
%8 = arith.cmpi slt, %arg0, %arg1 : i32
linalg.yield %8 : i1
} -> tensor<i1>
%5 = tensor.extract %4[] : tensor<i1>
cf.cond_br %5, ^bb2(%2 : tensor<i32>), ^bb3(%2 : tensor<i32>)
^bb2(%6: tensor<i32>): // pred: ^bb1
%7 = tensor.empty() : tensor<i32>
%8 = linalg.generic #attrs
ins(%6, %6 : tensor<i32>, tensor<i32>)
outs(%7 : tensor<i32>) {
^bb0(%arg0: i32, %arg1: i32, %arg2: i32):
%9 = arith.addi %arg0, %arg1 : i32
linalg.yield %9 : i32
} -> tensor<i32>
cf.br ^bb3(%8 : tensor<i32>)
^bb3(%10: tensor<i32>): // pred: ^bb1
return %10 : tensor<i32>
}
// CHECK-LABEL: func @main()
// CHECK-DAG: arith.constant 0
// CHECK-DAG: arith.constant 10
// CHECK: cf.br ^[[bb1:.*]](%{{.*}}: i32)
// CHECK-NEXT: ^[[bb1]](%{{.*}}: i32):
// CHECK-NEXT: arith.cmpi slt, %{{.*}}, %{{.*}}
// CHECK-NEXT: cf.cond_br %{{.*}}, ^[[bb2:.*]](%{{.*}} : i32), ^bb3(%{{.*}} : i32)
// CHECK-NEXT: ^[[bb2]](%{{.*}}: i32)
// CHECK-NEXT: arith.addi %{{.*}}, %{{.*}}
// CHECK-NEXT: cf.br ^[[bb3:.*]](%{{.*}} : i32)
// CHECK-NEXT: ^[[bb3]](%{{.*}}: i32)
// CHECK-NEXT: tensor.from_elements %{{.*}} : tensor<i32>
// CHECK-NEXT: return %{{.*}}
// CHECK-NEXT: }
// -----
// Similar to the above test with one change: one of the block after the
// if-condition passes/forwards its tensor argument to another block.
#map0 = affine_map<() -> ()>
#attrs = {
indexing_maps = [#map0, #map0, #map0],
iterator_types = []
}
func.func @main() -> (tensor<i32>) attributes {} {
%c0 = arith.constant 0 : i32
%0 = tensor.from_elements %c0 : tensor<i32>
%c10 = arith.constant 10 : i32
%1 = tensor.from_elements %c10 : tensor<i32>
cf.br ^bb1(%0 : tensor<i32>)
^bb1(%2: tensor<i32>): // 2 preds: ^bb0, ^bb2
%3 = tensor.empty() : tensor<i1>
%4 = linalg.generic #attrs
ins(%2, %1 : tensor<i32>, tensor<i32>)
outs(%3 : tensor<i1>) {
^bb0(%arg0: i32, %arg1: i32, %arg2: i1):
%8 = arith.cmpi slt, %arg0, %arg1 : i32
linalg.yield %8 : i1
} -> tensor<i1>
%5 = tensor.extract %4[] : tensor<i1>
cf.cond_br %5, ^bb2(%2 : tensor<i32>), ^bb3(%2 : tensor<i32>)
^bb2(%6: tensor<i32>): // pred: ^bb1
%7 = tensor.empty() : tensor<i32>
%8 = linalg.generic #attrs
ins(%6, %6 : tensor<i32>, tensor<i32>)
outs(%7 : tensor<i32>) {
^bb0(%arg0: i32, %arg1: i32, %arg2: i32):
%9 = arith.addi %arg0, %arg1 : i32
linalg.yield %9 : i32
} -> tensor<i32>
cf.br ^bb3(%8 : tensor<i32>)
^bb3(%10: tensor<i32>): // pred: ^bb1
cf.br ^bb4(%10 : tensor<i32>)
^bb4(%11: tensor<i32>): // pred: ^bb1
return %11 : tensor<i32>
}
// CHECK-LABEL: func @main()
// CHECK-DAG: arith.constant 0
// CHECK-DAG: arith.constant 10
// CHECK: cf.br ^[[bb1:.*]](%{{.*}}: i32)
// CHECK-NEXT: ^[[bb1]](%{{.*}}: i32):
// CHECK-NEXT: arith.cmpi slt, %{{.*}}, %{{.*}}
// CHECK-NEXT: cf.cond_br %{{.*}}, ^[[bb2:.*]](%{{.*}} : i32), ^bb3(%{{.*}} : i32)
// CHECK-NEXT: ^[[bb2]](%{{.*}}: i32)
// CHECK-NEXT: arith.addi %{{.*}}, %{{.*}}
// CHECK-NEXT: cf.br ^[[bb3:.*]](%{{.*}} : i32)
// CHECK-NEXT: ^[[bb3]](%{{.*}}: i32)
// CHECK-NEXT: cf.br ^[[bb4:.*]](%{{.*}} : i32)
// CHECK-NEXT: ^[[bb4]](%{{.*}}: i32)
// CHECK-NEXT: tensor.from_elements %{{.*}} : tensor<i32>
// CHECK-NEXT: return %{{.*}}
// CHECK-NEXT: }
// -----
#map0 = affine_map<() -> ()>
#attrs = {
indexing_maps = [#map0, #map0, #map0],
iterator_types = []
}
func.func @main() -> (tensor<i32>) attributes {} {
%c0 = arith.constant 0 : i32
%0 = tensor.from_elements %c0 : tensor<i32>
%c10 = arith.constant 10 : i32
%1 = tensor.from_elements %c10 : tensor<i32>
cf.br ^bb1(%0 : tensor<i32>)
^bb1(%2: tensor<i32>): // 2 preds: ^bb0, ^bb2
%3 = tensor.empty() : tensor<i1>
%4 = linalg.generic #attrs
ins(%2, %1 : tensor<i32>, tensor<i32>)
outs(%3 : tensor<i1>) {
^bb0(%arg0: i32, %arg1: i32, %arg2: i1):
%8 = arith.cmpi slt, %arg0, %arg1 : i32
linalg.yield %8 : i1
} -> tensor<i1>
%5 = tensor.extract %4[] : tensor<i1>
// This cf.cond_br intentionally has bb2 as it's target for both branches. This
// is to make sure that the "forward phase" of the cost-model correctly adds
// the users of a block argument (in this case bb2's argument) to the work
// list.
cf.cond_br %5, ^bb2(%2 : tensor<i32>), ^bb2(%2 : tensor<i32>)
^bb2(%6: tensor<i32>): // pred: ^bb1
%12 = tensor.from_elements %c10 : tensor<i32>
%7 = tensor.empty() : tensor<i32>
%8 = linalg.generic #attrs
ins(%6, %12 : tensor<i32>, tensor<i32>)
outs(%7 : tensor<i32>) {
^bb0(%arg0: i32, %arg1: i32, %arg2: i32):
%9 = arith.addi %arg0, %arg1 : i32
linalg.yield %9 : i32
} -> tensor<i32>
cf.br ^bb3(%8 : tensor<i32>)
^bb3(%10: tensor<i32>): // pred: ^bb1
return %10 : tensor<i32>
}
// CHECK-LABEL: func @main()
// CHECK-DAG: arith.constant 0
// CHECK-DAG: arith.constant 10
// CHECK: cf.br ^[[bb1:.*]](%{{.*}}: i32)
// CHECK-NEXT: ^[[bb1]](%{{.*}}: i32):
// CHECK-NEXT: arith.cmpi slt, %{{.*}}, %{{.*}}
// CHECK-NEXT: cf.cond_br %{{.*}}, ^[[bb2:.*]](%{{.*}} : i32), ^bb2(%{{.*}} : i32)
// CHECK-NEXT: ^[[bb2]](%{{.*}}: i32)
// CHECK-NEXT: arith.addi %{{.*}}, %{{.*}}
// CHECK-NEXT: cf.br ^[[bb3:.*]](%{{.*}} : i32)
// CHECK-NEXT: ^[[bb3]](%{{.*}}: i32)
// CHECK-NEXT: tensor.from_elements %{{.*}} : tensor<i32>
// CHECK-NEXT: return %{{.*}}
// CHECK-NEXT: }
|