File: inline-scalar-operands.mlir

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (48 lines) | stat: -rw-r--r-- 2,126 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
// RUN: mlir-opt %s -linalg-inline-scalar-operands -split-input-file | FileCheck %s

// CHECK: #[[MAP:.*]] = affine_map<(d0) -> (d0)>
#map2 = affine_map<(d0) -> (d0)>
#map3 = affine_map<(d0) -> ()>

// CHECK: func @inline_zerod(%[[ARG:.*]]: tensor<4xf32>, %[[SCALAR:.*]]: tensor<f32>)
func.func @inline_zerod(%arg0: tensor<4xf32>, %scalar: tensor<f32>) -> tensor<4xf32> {
    %0 = tensor.empty() : tensor<4xf32>
    // CHECK: linalg.generic {indexing_maps = [#[[MAP]], #[[MAP]]],
    // CHECK-SAME: iterator_types = ["parallel"]} ins(%[[ARG]] : tensor<4xf32>)
    %1 = linalg.generic {indexing_maps = [#map2, #map3, #map2],
                         iterator_types = ["parallel"]}
                         ins(%arg0, %scalar : tensor<4xf32>, tensor<f32>)
                         outs(%0 : tensor<4xf32>) {
    // CHECK: ^bb0(%{{.*}}: f32, %{{.*}}: f32)
    ^bb0(%arg1: f32, %arg2: f32, %arg3: f32):
      // CHECK: tensor.extract %[[SCALAR]][]
      %2 = arith.divf %arg1, %arg2 : f32
      linalg.yield %2 : f32
    } -> tensor<4xf32>
  return %1 : tensor<4xf32>
}

// -----

// CHECK: #[[MAP:.*]] = affine_map<(d0) -> (d0)>
#map2 = affine_map<(d0) -> (d0)>
#map3 = affine_map<(d0) -> (0)>

// CHECK: func @inline_oned(%[[ARG:.*]]: tensor<4xf32>, %[[SCALAR:.*]]: tensor<1xf32>)
func.func @inline_oned(%arg0: tensor<4xf32>, %scalar: tensor<1xf32>) -> tensor<4xf32> {
    // CHECK: %[[ZERO:.*]] = arith.constant 0 : index
    %0 = tensor.empty() : tensor<4xf32>
    // CHECK: linalg.generic {indexing_maps = [#[[MAP]], #[[MAP]]],
    // CHECK-SAME: iterator_types = ["parallel"]} ins(%[[ARG]] : tensor<4xf32>)
    %1 = linalg.generic {indexing_maps = [#map2, #map3, #map2],
                         iterator_types = ["parallel"]}
                         ins(%arg0, %scalar : tensor<4xf32>, tensor<1xf32>)
                         outs(%0 : tensor<4xf32>) {
    // CHECK: ^bb0(%{{.*}}: f32, %{{.*}}: f32)
    ^bb0(%arg1: f32, %arg2: f32, %arg3: f32):
      // CHECK: tensor.extract %[[SCALAR]][%[[ZERO]]]
      %2 = arith.divf %arg1, %arg2 : f32
      linalg.yield %2 : f32
    } -> tensor<4xf32>
  return %1 : tensor<4xf32>
}