File: one-shot-bufferize-analysis-2fill-extract-matmul-all-perms.mlir

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (651 lines) | stat: -rw-r--r-- 36,590 bytes parent folder | download | duplicates (15)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
// RUN: mlir-opt %s -one-shot-bufferize="test-analysis-only bufferize-function-boundaries" -split-input-file | FileCheck %s

/// All combinations of matmul(fill(extract(alloc_tensor)), fill(extract(%alloc_tensor)), %arg2)
/// These should all be inplaceable except the first op.

// -----

// CHECK-LABEL: func @fill_extract_matmul_
func.func @fill_extract_matmul_1234(
    %arg0: tensor<518x518xf32> {bufferization.buffer_layout = affine_map<(d0, d1) -> (d0, d1)>, bufferization.writable = false},
    %arg1: tensor<518x518xf32> {bufferization.buffer_layout = affine_map<(d0, d1) -> (d0, d1)>, bufferization.writable = false},
    %arg2: tensor<256x256xf32> {bufferization.buffer_layout = affine_map<(d0, d1) -> (d0, d1)>, bufferization.writable = true})
  -> tensor<256x256xf32>
{
  %c0 = arith.constant 0 : index
  %cst = arith.constant 0.000000e+00 : f32
  %cst_0 = arith.constant 1.000000e+00 : f32
  %0 = bufferization.alloc_tensor() : tensor<256x256xf32>

  // CHECK: {__inplace_operands_attr__ = ["none", "false"]}
  %1 = linalg.fill ins(%cst : f32) outs(%0 : tensor<256x256xf32>) -> tensor<256x256xf32>
  // CHECK: {__inplace_operands_attr__ = ["none", "true"]}
  %2 = linalg.fill ins(%cst_0 : f32) outs(%0 : tensor<256x256xf32>) -> tensor<256x256xf32>
  // CHECK: {__inplace_operands_attr__ = ["true"]}
  %3 = tensor.extract_slice %1[0, 0] [256, 16] [1, 1] : tensor<256x256xf32> to tensor<256x16xf32>
  // CHECK: {__inplace_operands_attr__ = ["true"]}
  %4 = tensor.extract_slice %2[0, 0] [16, 256] [1, 1] : tensor<256x256xf32> to tensor<16x256xf32>
  // CHECK: {__inplace_operands_attr__ = ["true", "true", "true"]}
  %5 = linalg.matmul ins(%3, %4 : tensor<256x16xf32>, tensor<16x256xf32>) outs(%arg2 : tensor<256x256xf32>) -> tensor<256x256xf32>
  return %5 : tensor<256x256xf32>
}

// -----

// CHECK-LABEL: func @fill_extract_matmul_
func.func @fill_extract_matmul_1243(
    %arg0: tensor<518x518xf32> {bufferization.buffer_layout = affine_map<(d0, d1) -> (d0, d1)>, bufferization.writable = false},
    %arg1: tensor<518x518xf32> {bufferization.buffer_layout = affine_map<(d0, d1) -> (d0, d1)>, bufferization.writable = false},
    %arg2: tensor<256x256xf32> {bufferization.buffer_layout = affine_map<(d0, d1) -> (d0, d1)>, bufferization.writable = true})
  -> tensor<256x256xf32>
{
  %c0 = arith.constant 0 : index
  %cst = arith.constant 0.000000e+00 : f32
  %cst_0 = arith.constant 1.000000e+00 : f32
  %0 = bufferization.alloc_tensor() : tensor<256x256xf32>

  // CHECK: {__inplace_operands_attr__ = ["none", "false"]}
  %1 = linalg.fill ins(%cst : f32) outs(%0 : tensor<256x256xf32>) -> tensor<256x256xf32>
  // CHECK: {__inplace_operands_attr__ = ["none", "true"]}
  %2 = linalg.fill ins(%cst_0 : f32) outs(%0 : tensor<256x256xf32>) -> tensor<256x256xf32>
  // CHECK: {__inplace_operands_attr__ = ["true"]}
  %4 = tensor.extract_slice %2[0, 0] [16, 256] [1, 1] : tensor<256x256xf32> to tensor<16x256xf32>
  // CHECK: {__inplace_operands_attr__ = ["true"]}
  %3 = tensor.extract_slice %1[0, 0] [256, 16] [1, 1] : tensor<256x256xf32> to tensor<256x16xf32>
  // CHECK: {__inplace_operands_attr__ = ["true", "true", "true"]}
  %5 = linalg.matmul ins(%3, %4 : tensor<256x16xf32>, tensor<16x256xf32>) outs(%arg2 : tensor<256x256xf32>) -> tensor<256x256xf32>
  return %5 : tensor<256x256xf32>
}

// -----

// CHECK-LABEL: func @fill_extract_matmul_
func.func @fill_extract_matmul_1324(
    %arg0: tensor<518x518xf32> {bufferization.buffer_layout = affine_map<(d0, d1) -> (d0, d1)>, bufferization.writable = false},
    %arg1: tensor<518x518xf32> {bufferization.buffer_layout = affine_map<(d0, d1) -> (d0, d1)>, bufferization.writable = false},
    %arg2: tensor<256x256xf32> {bufferization.buffer_layout = affine_map<(d0, d1) -> (d0, d1)>, bufferization.writable = true})
  -> tensor<256x256xf32>
{
  %c0 = arith.constant 0 : index
  %cst = arith.constant 0.000000e+00 : f32
  %cst_0 = arith.constant 1.000000e+00 : f32
  %0 = bufferization.alloc_tensor() : tensor<256x256xf32>

  // CHECK: {__inplace_operands_attr__ = ["none", "false"]}
  %1 = linalg.fill ins(%cst : f32) outs(%0 : tensor<256x256xf32>) -> tensor<256x256xf32>
  // CHECK: {__inplace_operands_attr__ = ["true"]}
  %3 = tensor.extract_slice %1[0, 0] [256, 16] [1, 1] : tensor<256x256xf32> to tensor<256x16xf32>
  // CHECK: {__inplace_operands_attr__ = ["none", "true"]}
  %2 = linalg.fill ins(%cst_0 : f32) outs(%0 : tensor<256x256xf32>) -> tensor<256x256xf32>
  // CHECK: {__inplace_operands_attr__ = ["true"]}
  %4 = tensor.extract_slice %2[0, 0] [16, 256] [1, 1] : tensor<256x256xf32> to tensor<16x256xf32>
  // CHECK: {__inplace_operands_attr__ = ["true", "true", "true"]}
  %5 = linalg.matmul ins(%3, %4 : tensor<256x16xf32>, tensor<16x256xf32>) outs(%arg2 : tensor<256x256xf32>) -> tensor<256x256xf32>
  return %5 : tensor<256x256xf32>
}

// -----

// CHECK-LABEL: func @fill_extract_matmul_
func.func @fill_extract_matmul_1342(
    %arg0: tensor<518x518xf32> {bufferization.buffer_layout = affine_map<(d0, d1) -> (d0, d1)>, bufferization.writable = false},
    %arg1: tensor<518x518xf32> {bufferization.buffer_layout = affine_map<(d0, d1) -> (d0, d1)>, bufferization.writable = false},
    %arg2: tensor<256x256xf32> {bufferization.buffer_layout = affine_map<(d0, d1) -> (d0, d1)>, bufferization.writable = true})
  -> tensor<256x256xf32>
{
  %c0 = arith.constant 0 : index
  %cst = arith.constant 0.000000e+00 : f32
  %cst_0 = arith.constant 1.000000e+00 : f32
  %0 = bufferization.alloc_tensor() : tensor<256x256xf32>

  // CHECK: {__inplace_operands_attr__ = ["none", "false"]}
  %1 = linalg.fill ins(%cst : f32) outs(%0 : tensor<256x256xf32>) -> tensor<256x256xf32>
  // CHECK: {__inplace_operands_attr__ = ["true"]}
  %3 = tensor.extract_slice %1[0, 0] [256, 16] [1, 1] : tensor<256x256xf32> to tensor<256x16xf32>
  // CHECK: {__inplace_operands_attr__ = ["true"]}
  %4 = tensor.extract_slice %0[0, 0] [16, 256] [1, 1] : tensor<256x256xf32> to tensor<16x256xf32>
  // CHECK: {__inplace_operands_attr__ = ["none", "true"]}
  %2 = linalg.fill ins(%cst_0 : f32) outs(%4 : tensor<16x256xf32>) -> tensor<16x256xf32>
  // CHECK: {__inplace_operands_attr__ = ["true", "true", "true"]}
  %5 = linalg.matmul ins(%3, %2 : tensor<256x16xf32>, tensor<16x256xf32>) outs(%arg2 : tensor<256x256xf32>) -> tensor<256x256xf32>
  return %5 : tensor<256x256xf32>
}

// -----

// CHECK-LABEL: func @fill_extract_matmul_
func.func @fill_extract_matmul_1423(
    %arg0: tensor<518x518xf32> {bufferization.buffer_layout = affine_map<(d0, d1) -> (d0, d1)>, bufferization.writable = false},
    %arg1: tensor<518x518xf32> {bufferization.buffer_layout = affine_map<(d0, d1) -> (d0, d1)>, bufferization.writable = false},
    %arg2: tensor<256x256xf32> {bufferization.buffer_layout = affine_map<(d0, d1) -> (d0, d1)>, bufferization.writable = true})
  -> tensor<256x256xf32>
{
  %c0 = arith.constant 0 : index
  %cst = arith.constant 0.000000e+00 : f32
  %cst_0 = arith.constant 1.000000e+00 : f32
  %0 = bufferization.alloc_tensor() : tensor<256x256xf32>

  // CHECK: {__inplace_operands_attr__ = ["none", "false"]}
  %1 = linalg.fill ins(%cst : f32) outs(%0 : tensor<256x256xf32>) -> tensor<256x256xf32>
  // CHECK: {__inplace_operands_attr__ = ["true"]}
  %4 = tensor.extract_slice %0[0, 0] [16, 256] [1, 1] : tensor<256x256xf32> to tensor<16x256xf32>
  // CHECK: {__inplace_operands_attr__ = ["none", "true"]}
  %2 = linalg.fill ins(%cst_0 : f32) outs(%4 : tensor<16x256xf32>) -> tensor<16x256xf32>
  // CHECK: {__inplace_operands_attr__ = ["true"]}
  %3 = tensor.extract_slice %1[0, 0] [256, 16] [1, 1] : tensor<256x256xf32> to tensor<256x16xf32>
  // CHECK: {__inplace_operands_attr__ = ["true", "true", "true"]}
  %5 = linalg.matmul ins(%3, %2 : tensor<256x16xf32>, tensor<16x256xf32>) outs(%arg2 : tensor<256x256xf32>) -> tensor<256x256xf32>
  return %5 : tensor<256x256xf32>
}

// -----

// CHECK-LABEL: func @fill_extract_matmul_
func.func @fill_extract_matmul_1432(
    %arg0: tensor<518x518xf32> {bufferization.buffer_layout = affine_map<(d0, d1) -> (d0, d1)>, bufferization.writable = false},
    %arg1: tensor<518x518xf32> {bufferization.buffer_layout = affine_map<(d0, d1) -> (d0, d1)>, bufferization.writable = false},
    %arg2: tensor<256x256xf32> {bufferization.buffer_layout = affine_map<(d0, d1) -> (d0, d1)>, bufferization.writable = true})
  -> tensor<256x256xf32>
{
  %c0 = arith.constant 0 : index
  %cst = arith.constant 0.000000e+00 : f32
  %cst_0 = arith.constant 1.000000e+00 : f32
  %0 = bufferization.alloc_tensor() : tensor<256x256xf32>

  // CHECK: {__inplace_operands_attr__ = ["none", "false"]}
  %1 = linalg.fill ins(%cst : f32) outs(%0 : tensor<256x256xf32>) -> tensor<256x256xf32>
  // CHECK: {__inplace_operands_attr__ = ["true"]}
  %4 = tensor.extract_slice %0[0, 0] [16, 256] [1, 1] : tensor<256x256xf32> to tensor<16x256xf32>
  // CHECK: {__inplace_operands_attr__ = ["true"]}
  %3 = tensor.extract_slice %1[0, 0] [256, 16] [1, 1] : tensor<256x256xf32> to tensor<256x16xf32>
  // CHECK: {__inplace_operands_attr__ = ["none", "true"]}
  %2 = linalg.fill ins(%cst_0 : f32) outs(%4 : tensor<16x256xf32>) -> tensor<16x256xf32>
  // CHECK: {__inplace_operands_attr__ = ["true", "true", "true"]}
  %5 = linalg.matmul ins(%3, %2 : tensor<256x16xf32>, tensor<16x256xf32>) outs(%arg2 : tensor<256x256xf32>) -> tensor<256x256xf32>
  return %5 : tensor<256x256xf32>
}

// -----

// CHECK-LABEL: func @fill_extract_matmul_
func.func @fill_extract_matmul_2134(
    %arg0: tensor<518x518xf32> {bufferization.buffer_layout = affine_map<(d0, d1) -> (d0, d1)>, bufferization.writable = false},
    %arg1: tensor<518x518xf32> {bufferization.buffer_layout = affine_map<(d0, d1) -> (d0, d1)>, bufferization.writable = false},
    %arg2: tensor<256x256xf32> {bufferization.buffer_layout = affine_map<(d0, d1) -> (d0, d1)>, bufferization.writable = true})
  -> tensor<256x256xf32>
{
  %c0 = arith.constant 0 : index
  %cst = arith.constant 0.000000e+00 : f32
  %cst_0 = arith.constant 1.000000e+00 : f32
  %0 = bufferization.alloc_tensor() : tensor<256x256xf32>

  // CHECK: {__inplace_operands_attr__ = ["none", "false"]}
  %2 = linalg.fill ins(%cst_0 : f32) outs(%0 : tensor<256x256xf32>) -> tensor<256x256xf32>
  // CHECK: {__inplace_operands_attr__ = ["none", "true"]}
  %1 = linalg.fill ins(%cst : f32) outs(%0 : tensor<256x256xf32>) -> tensor<256x256xf32>
  // CHECK: {__inplace_operands_attr__ = ["true"]}
  %3 = tensor.extract_slice %1[0, 0] [256, 16] [1, 1] : tensor<256x256xf32> to tensor<256x16xf32>
  // CHECK: {__inplace_operands_attr__ = ["true"]}
  %4 = tensor.extract_slice %2[0, 0] [16, 256] [1, 1] : tensor<256x256xf32> to tensor<16x256xf32>
  // CHECK: {__inplace_operands_attr__ = ["true", "true", "true"]}
  %5 = linalg.matmul ins(%3, %4 : tensor<256x16xf32>, tensor<16x256xf32>) outs(%arg2 : tensor<256x256xf32>) -> tensor<256x256xf32>
  return %5 : tensor<256x256xf32>
}

// -----

// CHECK-LABEL: func @fill_extract_matmul_
func.func @fill_extract_matmul_2143(
    %arg0: tensor<518x518xf32> {bufferization.buffer_layout = affine_map<(d0, d1) -> (d0, d1)>, bufferization.writable = false},
    %arg1: tensor<518x518xf32> {bufferization.buffer_layout = affine_map<(d0, d1) -> (d0, d1)>, bufferization.writable = false},
    %arg2: tensor<256x256xf32> {bufferization.buffer_layout = affine_map<(d0, d1) -> (d0, d1)>, bufferization.writable = true})
  -> tensor<256x256xf32>
{
  %c0 = arith.constant 0 : index
  %cst = arith.constant 0.000000e+00 : f32
  %cst_0 = arith.constant 1.000000e+00 : f32
  %0 = bufferization.alloc_tensor() : tensor<256x256xf32>

  // CHECK: {__inplace_operands_attr__ = ["none", "false"]}
  %2 = linalg.fill ins(%cst_0 : f32) outs(%0 : tensor<256x256xf32>) -> tensor<256x256xf32>
  // CHECK: {__inplace_operands_attr__ = ["none", "true"]}
  %1 = linalg.fill ins(%cst : f32) outs(%0 : tensor<256x256xf32>) -> tensor<256x256xf32>
  // CHECK: {__inplace_operands_attr__ = ["true"]}
  %4 = tensor.extract_slice %2[0, 0] [16, 256] [1, 1] : tensor<256x256xf32> to tensor<16x256xf32>
  // CHECK: {__inplace_operands_attr__ = ["true"]}
  %3 = tensor.extract_slice %1[0, 0] [256, 16] [1, 1] : tensor<256x256xf32> to tensor<256x16xf32>
  // CHECK: {__inplace_operands_attr__ = ["true", "true", "true"]}
  %5 = linalg.matmul ins(%3, %4 : tensor<256x16xf32>, tensor<16x256xf32>) outs(%arg2 : tensor<256x256xf32>) -> tensor<256x256xf32>
  return %5 : tensor<256x256xf32>
}

// -----

// CHECK-LABEL: func @fill_extract_matmul_
func.func @fill_extract_matmul_2314(
    %arg0: tensor<518x518xf32> {bufferization.buffer_layout = affine_map<(d0, d1) -> (d0, d1)>, bufferization.writable = false},
    %arg1: tensor<518x518xf32> {bufferization.buffer_layout = affine_map<(d0, d1) -> (d0, d1)>, bufferization.writable = false},
    %arg2: tensor<256x256xf32> {bufferization.buffer_layout = affine_map<(d0, d1) -> (d0, d1)>, bufferization.writable = true})
  -> tensor<256x256xf32>
{
  %c0 = arith.constant 0 : index
  %cst = arith.constant 0.000000e+00 : f32
  %cst_0 = arith.constant 1.000000e+00 : f32
  %0 = bufferization.alloc_tensor() : tensor<256x256xf32>

  // CHECK: {__inplace_operands_attr__ = ["none", "false"]}
  %2 = linalg.fill ins(%cst_0 : f32) outs(%0 : tensor<256x256xf32>) -> tensor<256x256xf32>
  // CHECK: {__inplace_operands_attr__ = ["true"]}
  %3 = tensor.extract_slice %0[0, 0] [256, 16] [1, 1] : tensor<256x256xf32> to tensor<256x16xf32>
  // CHECK: {__inplace_operands_attr__ = ["none", "true"]}
  %1 = linalg.fill ins(%cst : f32) outs(%3 : tensor<256x16xf32>) -> tensor<256x16xf32>
  // CHECK: {__inplace_operands_attr__ = ["true"]}
  %4 = tensor.extract_slice %2[0, 0] [16, 256] [1, 1] : tensor<256x256xf32> to tensor<16x256xf32>
  // CHECK: {__inplace_operands_attr__ = ["true", "true", "true"]}
  %5 = linalg.matmul ins(%1, %4 : tensor<256x16xf32>, tensor<16x256xf32>) outs(%arg2 : tensor<256x256xf32>) -> tensor<256x256xf32>
  return %5 : tensor<256x256xf32>
}

// -----

// CHECK-LABEL: func @fill_extract_matmul_
func.func @fill_extract_matmul_2341(
    %arg0: tensor<518x518xf32> {bufferization.buffer_layout = affine_map<(d0, d1) -> (d0, d1)>, bufferization.writable = false},
    %arg1: tensor<518x518xf32> {bufferization.buffer_layout = affine_map<(d0, d1) -> (d0, d1)>, bufferization.writable = false},
    %arg2: tensor<256x256xf32> {bufferization.buffer_layout = affine_map<(d0, d1) -> (d0, d1)>, bufferization.writable = true})
  -> tensor<256x256xf32>
{
  %c0 = arith.constant 0 : index
  %cst = arith.constant 0.000000e+00 : f32
  %cst_0 = arith.constant 1.000000e+00 : f32
  %0 = bufferization.alloc_tensor() : tensor<256x256xf32>

  // CHECK: {__inplace_operands_attr__ = ["none", "false"]}
  %2 = linalg.fill ins(%cst_0 : f32) outs(%0 : tensor<256x256xf32>) -> tensor<256x256xf32>
  // CHECK: {__inplace_operands_attr__ = ["true"]}
  %3 = tensor.extract_slice %0[0, 0] [256, 16] [1, 1] : tensor<256x256xf32> to tensor<256x16xf32>
  // CHECK: {__inplace_operands_attr__ = ["true"]}
  %4 = tensor.extract_slice %2[0, 0] [16, 256] [1, 1] : tensor<256x256xf32> to tensor<16x256xf32>
  // CHECK: {__inplace_operands_attr__ = ["none", "true"]}
  %1 = linalg.fill ins(%cst : f32) outs(%3 : tensor<256x16xf32>) -> tensor<256x16xf32>
  // CHECK: {__inplace_operands_attr__ = ["true", "true", "true"]}
  %5 = linalg.matmul ins(%1, %4 : tensor<256x16xf32>, tensor<16x256xf32>) outs(%arg2 : tensor<256x256xf32>) -> tensor<256x256xf32>
  return %5 : tensor<256x256xf32>
}

// -----

// CHECK-LABEL: func @fill_extract_matmul_
func.func @fill_extract_matmul_2413(
    %arg0: tensor<518x518xf32> {bufferization.buffer_layout = affine_map<(d0, d1) -> (d0, d1)>, bufferization.writable = false},
    %arg1: tensor<518x518xf32> {bufferization.buffer_layout = affine_map<(d0, d1) -> (d0, d1)>, bufferization.writable = false},
    %arg2: tensor<256x256xf32> {bufferization.buffer_layout = affine_map<(d0, d1) -> (d0, d1)>, bufferization.writable = true})
  -> tensor<256x256xf32>
{
  %c0 = arith.constant 0 : index
  %cst = arith.constant 0.000000e+00 : f32
  %cst_0 = arith.constant 1.000000e+00 : f32
  %0 = bufferization.alloc_tensor() : tensor<256x256xf32>

  // CHECK: {__inplace_operands_attr__ = ["none", "false"]}
  %2 = linalg.fill ins(%cst_0 : f32) outs(%0 : tensor<256x256xf32>) -> tensor<256x256xf32>
  // CHECK: {__inplace_operands_attr__ = ["true"]}
  %4 = tensor.extract_slice %2[0, 0] [16, 256] [1, 1] : tensor<256x256xf32> to tensor<16x256xf32>
  // CHECK: {__inplace_operands_attr__ = ["none", "true"]}
  %1 = linalg.fill ins(%cst : f32) outs(%0 : tensor<256x256xf32>) -> tensor<256x256xf32>
  // CHECK: {__inplace_operands_attr__ = ["true"]}
  %3 = tensor.extract_slice %1[0, 0] [256, 16] [1, 1] : tensor<256x256xf32> to tensor<256x16xf32>
  // CHECK: {__inplace_operands_attr__ = ["true", "true", "true"]}
  %5 = linalg.matmul ins(%3, %4 : tensor<256x16xf32>, tensor<16x256xf32>) outs(%arg2 : tensor<256x256xf32>) -> tensor<256x256xf32>
  return %5 : tensor<256x256xf32>
}

// -----

// CHECK-LABEL: func @fill_extract_matmul_
func.func @fill_extract_matmul_2431(
    %arg0: tensor<518x518xf32> {bufferization.buffer_layout = affine_map<(d0, d1) -> (d0, d1)>, bufferization.writable = false},
    %arg1: tensor<518x518xf32> {bufferization.buffer_layout = affine_map<(d0, d1) -> (d0, d1)>, bufferization.writable = false},
    %arg2: tensor<256x256xf32> {bufferization.buffer_layout = affine_map<(d0, d1) -> (d0, d1)>, bufferization.writable = true})
  -> tensor<256x256xf32>
{
  %c0 = arith.constant 0 : index
  %cst = arith.constant 0.000000e+00 : f32
  %cst_0 = arith.constant 1.000000e+00 : f32
  %0 = bufferization.alloc_tensor() : tensor<256x256xf32>

  // CHECK: {__inplace_operands_attr__ = ["none", "false"]}
  %2 = linalg.fill ins(%cst_0 : f32) outs(%0 : tensor<256x256xf32>) -> tensor<256x256xf32>
  // CHECK: {__inplace_operands_attr__ = ["true"]}
  %4 = tensor.extract_slice %2[0, 0] [16, 256] [1, 1] : tensor<256x256xf32> to tensor<16x256xf32>
  // CHECK: {__inplace_operands_attr__ = ["true"]}
  %3 = tensor.extract_slice %0[0, 0] [256, 16] [1, 1] : tensor<256x256xf32> to tensor<256x16xf32>
  // CHECK: {__inplace_operands_attr__ = ["none", "true"]}
  %1 = linalg.fill ins(%cst : f32) outs(%3 : tensor<256x16xf32>) -> tensor<256x16xf32>
  // CHECK: {__inplace_operands_attr__ = ["true", "true", "true"]}
  %5 = linalg.matmul ins(%1, %4 : tensor<256x16xf32>, tensor<16x256xf32>) outs(%arg2 : tensor<256x256xf32>) -> tensor<256x256xf32>
  return %5 : tensor<256x256xf32>
}

// -----

// CHECK-LABEL: func @fill_extract_matmul_
func.func @fill_extract_matmul_3124(
    %arg0: tensor<518x518xf32> {bufferization.buffer_layout = affine_map<(d0, d1) -> (d0, d1)>, bufferization.writable = false},
    %arg1: tensor<518x518xf32> {bufferization.buffer_layout = affine_map<(d0, d1) -> (d0, d1)>, bufferization.writable = false},
    %arg2: tensor<256x256xf32> {bufferization.buffer_layout = affine_map<(d0, d1) -> (d0, d1)>, bufferization.writable = true})
  -> tensor<256x256xf32>
{
  %c0 = arith.constant 0 : index
  %cst = arith.constant 0.000000e+00 : f32
  %cst_0 = arith.constant 1.000000e+00 : f32
  %0 = bufferization.alloc_tensor() : tensor<256x256xf32>

  // CHECK: {__inplace_operands_attr__ = ["false"]}
  %3 = tensor.extract_slice %0[0, 0] [256, 16] [1, 1] : tensor<256x256xf32> to tensor<256x16xf32>
  // CHECK: {__inplace_operands_attr__ = ["none", "true"]}
  %1 = linalg.fill ins(%cst : f32) outs(%3 : tensor<256x16xf32>) -> tensor<256x16xf32>
  // CHECK: {__inplace_operands_attr__ = ["none", "true"]}
  %2 = linalg.fill ins(%cst_0 : f32) outs(%0 : tensor<256x256xf32>) -> tensor<256x256xf32>
  // CHECK: {__inplace_operands_attr__ = ["true"]}
  %4 = tensor.extract_slice %2[0, 0] [16, 256] [1, 1] : tensor<256x256xf32> to tensor<16x256xf32>
  // CHECK: {__inplace_operands_attr__ = ["true", "true", "true"]}
  %5 = linalg.matmul ins(%1, %4 : tensor<256x16xf32>, tensor<16x256xf32>) outs(%arg2 : tensor<256x256xf32>) -> tensor<256x256xf32>
  return %5 : tensor<256x256xf32>
}

// -----

// CHECK-LABEL: func @fill_extract_matmul_
func.func @fill_extract_matmul_3142(
    %arg0: tensor<518x518xf32> {bufferization.buffer_layout = affine_map<(d0, d1) -> (d0, d1)>, bufferization.writable = false},
    %arg1: tensor<518x518xf32> {bufferization.buffer_layout = affine_map<(d0, d1) -> (d0, d1)>, bufferization.writable = false},
    %arg2: tensor<256x256xf32> {bufferization.buffer_layout = affine_map<(d0, d1) -> (d0, d1)>, bufferization.writable = true})
  -> tensor<256x256xf32>
{
  %c0 = arith.constant 0 : index
  %cst = arith.constant 0.000000e+00 : f32
  %cst_0 = arith.constant 1.000000e+00 : f32
  %0 = bufferization.alloc_tensor() : tensor<256x256xf32>

  // CHECK: {__inplace_operands_attr__ = ["false"]}
  %3 = tensor.extract_slice %0[0, 0] [256, 16] [1, 1] : tensor<256x256xf32> to tensor<256x16xf32>
  // CHECK: {__inplace_operands_attr__ = ["none", "true"]}
  %1 = linalg.fill ins(%cst : f32) outs(%3 : tensor<256x16xf32>) -> tensor<256x16xf32>
  // CHECK: {__inplace_operands_attr__ = ["true"]}
  %4 = tensor.extract_slice %0[0, 0] [16, 256] [1, 1] : tensor<256x256xf32> to tensor<16x256xf32>
  // CHECK: {__inplace_operands_attr__ = ["none", "true"]}
  %2 = linalg.fill ins(%cst_0 : f32) outs(%4 : tensor<16x256xf32>) -> tensor<16x256xf32>
  // CHECK: {__inplace_operands_attr__ = ["true", "true", "true"]}
  %5 = linalg.matmul ins(%1, %2 : tensor<256x16xf32>, tensor<16x256xf32>) outs(%arg2 : tensor<256x256xf32>) -> tensor<256x256xf32>
  return %5 : tensor<256x256xf32>
}

// -----

// CHECK-LABEL: func @fill_extract_matmul_
func.func @fill_extract_matmul_3214(
    %arg0: tensor<518x518xf32> {bufferization.buffer_layout = affine_map<(d0, d1) -> (d0, d1)>, bufferization.writable = false},
    %arg1: tensor<518x518xf32> {bufferization.buffer_layout = affine_map<(d0, d1) -> (d0, d1)>, bufferization.writable = false},
    %arg2: tensor<256x256xf32> {bufferization.buffer_layout = affine_map<(d0, d1) -> (d0, d1)>, bufferization.writable = true})  -> tensor<256x256xf32>
{
  %c0 = arith.constant 0 : index
  %cst = arith.constant 0.000000e+00 : f32
  %cst_0 = arith.constant 1.000000e+00 : f32
  %0 = bufferization.alloc_tensor() : tensor<256x256xf32>

  // CHECK: {__inplace_operands_attr__ = ["false"]}
  %3 = tensor.extract_slice %0[0, 0] [256, 16] [1, 1] : tensor<256x256xf32> to tensor<256x16xf32>
  // CHECK: {__inplace_operands_attr__ = ["none", "true"]}
  %2 = linalg.fill ins(%cst_0 : f32) outs(%0 : tensor<256x256xf32>) -> tensor<256x256xf32>
  // CHECK: {__inplace_operands_attr__ = ["none", "true"]}
  %1 = linalg.fill ins(%cst : f32) outs(%3 : tensor<256x16xf32>) -> tensor<256x16xf32>
  // CHECK: {__inplace_operands_attr__ = ["true"]}
  %4 = tensor.extract_slice %2[0, 0] [16, 256] [1, 1] : tensor<256x256xf32> to tensor<16x256xf32>
  // CHECK: {__inplace_operands_attr__ = ["true", "true", "true"]}
  %5 = linalg.matmul ins(%1, %4 : tensor<256x16xf32>, tensor<16x256xf32>) outs(%arg2 : tensor<256x256xf32>) -> tensor<256x256xf32>
  return %5 : tensor<256x256xf32>
}

// -----

// CHECK-LABEL: func @fill_extract_matmul_
func.func @fill_extract_matmul_3241(
    %arg0: tensor<518x518xf32> {bufferization.buffer_layout = affine_map<(d0, d1) -> (d0, d1)>, bufferization.writable = false},
    %arg1: tensor<518x518xf32> {bufferization.buffer_layout = affine_map<(d0, d1) -> (d0, d1)>, bufferization.writable = false},
    %arg2: tensor<256x256xf32> {bufferization.buffer_layout = affine_map<(d0, d1) -> (d0, d1)>, bufferization.writable = true})
  -> tensor<256x256xf32>
{
  %c0 = arith.constant 0 : index
  %cst = arith.constant 0.000000e+00 : f32
  %cst_0 = arith.constant 1.000000e+00 : f32
  %0 = bufferization.alloc_tensor() : tensor<256x256xf32>

  // CHECK: {__inplace_operands_attr__ = ["false"]}
  %3 = tensor.extract_slice %0[0, 0] [256, 16] [1, 1] : tensor<256x256xf32> to tensor<256x16xf32>
  // CHECK: {__inplace_operands_attr__ = ["none", "true"]}
  %2 = linalg.fill ins(%cst_0 : f32) outs(%0 : tensor<256x256xf32>) -> tensor<256x256xf32>
  // CHECK: {__inplace_operands_attr__ = ["true"]}
  %4 = tensor.extract_slice %2[0, 0] [16, 256] [1, 1] : tensor<256x256xf32> to tensor<16x256xf32>
  // CHECK: {__inplace_operands_attr__ = ["none", "true"]}
  %1 = linalg.fill ins(%cst : f32) outs(%3 : tensor<256x16xf32>) -> tensor<256x16xf32>
  // CHECK: {__inplace_operands_attr__ = ["true", "true", "true"]}
  %5 = linalg.matmul ins(%1, %4 : tensor<256x16xf32>, tensor<16x256xf32>) outs(%arg2 : tensor<256x256xf32>) -> tensor<256x256xf32>
  return %5 : tensor<256x256xf32>
}

// -----

// CHECK-LABEL: func @fill_extract_matmul_
func.func @fill_extract_matmul_3412(
    %arg0: tensor<518x518xf32> {bufferization.buffer_layout = affine_map<(d0, d1) -> (d0, d1)>, bufferization.writable = false},
    %arg1: tensor<518x518xf32> {bufferization.buffer_layout = affine_map<(d0, d1) -> (d0, d1)>, bufferization.writable = false},
    %arg2: tensor<256x256xf32> {bufferization.buffer_layout = affine_map<(d0, d1) -> (d0, d1)>, bufferization.writable = true})
  -> tensor<256x256xf32>
{
  %c0 = arith.constant 0 : index
  %cst = arith.constant 0.000000e+00 : f32
  %cst_0 = arith.constant 1.000000e+00 : f32
  %0 = bufferization.alloc_tensor() : tensor<256x256xf32>

  // CHECK: {__inplace_operands_attr__ = ["false"]}
  %3 = tensor.extract_slice %0[0, 0] [256, 16] [1, 1] : tensor<256x256xf32> to tensor<256x16xf32>
  // CHECK: {__inplace_operands_attr__ = ["true"]}
  %4 = tensor.extract_slice %0[0, 0] [16, 256] [1, 1] : tensor<256x256xf32> to tensor<16x256xf32>
  // CHECK: {__inplace_operands_attr__ = ["none", "true"]}
  %1 = linalg.fill ins(%cst : f32) outs(%3 : tensor<256x16xf32>) -> tensor<256x16xf32>
  // CHECK: {__inplace_operands_attr__ = ["none", "true"]}
  %2 = linalg.fill ins(%cst_0 : f32) outs(%4 : tensor<16x256xf32>) -> tensor<16x256xf32>
  // CHECK: {__inplace_operands_attr__ = ["true", "true", "true"]}
  %5 = linalg.matmul ins(%1, %2 : tensor<256x16xf32>, tensor<16x256xf32>) outs(%arg2 : tensor<256x256xf32>) -> tensor<256x256xf32>
  return %5 : tensor<256x256xf32>
}

// -----

// CHECK-LABEL: func @fill_extract_matmul_
func.func @fill_extract_matmul_3421(
    %arg0: tensor<518x518xf32> {bufferization.buffer_layout = affine_map<(d0, d1) -> (d0, d1)>, bufferization.writable = false},
    %arg1: tensor<518x518xf32> {bufferization.buffer_layout = affine_map<(d0, d1) -> (d0, d1)>, bufferization.writable = false},
    %arg2: tensor<256x256xf32> {bufferization.buffer_layout = affine_map<(d0, d1) -> (d0, d1)>, bufferization.writable = true})
  -> tensor<256x256xf32>
{
  %c0 = arith.constant 0 : index
  %cst = arith.constant 0.000000e+00 : f32
  %cst_0 = arith.constant 1.000000e+00 : f32
  %0 = bufferization.alloc_tensor() : tensor<256x256xf32>

  // CHECK: {__inplace_operands_attr__ = ["false"]}
  %3 = tensor.extract_slice %0[0, 0] [256, 16] [1, 1] : tensor<256x256xf32> to tensor<256x16xf32>
  // CHECK: {__inplace_operands_attr__ = ["true"]}
  %4 = tensor.extract_slice %0[0, 0] [16, 256] [1, 1] : tensor<256x256xf32> to tensor<16x256xf32>
  // CHECK: {__inplace_operands_attr__ = ["none", "true"]}
  %2 = linalg.fill ins(%cst_0 : f32) outs(%4 : tensor<16x256xf32>) -> tensor<16x256xf32>
  // CHECK: {__inplace_operands_attr__ = ["none", "true"]}
  %1 = linalg.fill ins(%cst : f32) outs(%3 : tensor<256x16xf32>) -> tensor<256x16xf32>
  // CHECK: {__inplace_operands_attr__ = ["true", "true", "true"]}
  %5 = linalg.matmul ins(%1, %2 : tensor<256x16xf32>, tensor<16x256xf32>) outs(%arg2 : tensor<256x256xf32>) -> tensor<256x256xf32>
  return %5 : tensor<256x256xf32>
}

// -----

// CHECK-LABEL: func @fill_extract_matmul_
func.func @fill_extract_matmul_4123(
    %arg0: tensor<518x518xf32> {bufferization.buffer_layout = affine_map<(d0, d1) -> (d0, d1)>, bufferization.writable = false},
    %arg1: tensor<518x518xf32> {bufferization.buffer_layout = affine_map<(d0, d1) -> (d0, d1)>, bufferization.writable = false},
    %arg2: tensor<256x256xf32> {bufferization.buffer_layout = affine_map<(d0, d1) -> (d0, d1)>, bufferization.writable = true})
  -> tensor<256x256xf32>
{
  %c0 = arith.constant 0 : index
  %cst = arith.constant 0.000000e+00 : f32
  %cst_0 = arith.constant 1.000000e+00 : f32
  %0 = bufferization.alloc_tensor() : tensor<256x256xf32>

  // CHECK: {__inplace_operands_attr__ = ["false"]}
  %4 = tensor.extract_slice %0[0, 0] [16, 256] [1, 1] : tensor<256x256xf32> to tensor<16x256xf32>
  // CHECK: {__inplace_operands_attr__ = ["none", "true"]}
  %1 = linalg.fill ins(%cst : f32) outs(%0 : tensor<256x256xf32>) -> tensor<256x256xf32>
  // CHECK: {__inplace_operands_attr__ = ["none", "true"]}
  %2 = linalg.fill ins(%cst_0 : f32) outs(%4 : tensor<16x256xf32>) -> tensor<16x256xf32>
  // CHECK: {__inplace_operands_attr__ = ["true"]}
  %3 = tensor.extract_slice %1[0, 0] [256, 16] [1, 1] : tensor<256x256xf32> to tensor<256x16xf32>
  // CHECK: {__inplace_operands_attr__ = ["true", "true", "true"]}
  %5 = linalg.matmul ins(%3, %2 : tensor<256x16xf32>, tensor<16x256xf32>) outs(%arg2 : tensor<256x256xf32>) -> tensor<256x256xf32>
  return %5 : tensor<256x256xf32>
}

// -----

// CHECK-LABEL: func @fill_extract_matmul_
func.func @fill_extract_matmul_4132(
    %arg0: tensor<518x518xf32> {bufferization.buffer_layout = affine_map<(d0, d1) -> (d0, d1)>, bufferization.writable = false},
    %arg1: tensor<518x518xf32> {bufferization.buffer_layout = affine_map<(d0, d1) -> (d0, d1)>, bufferization.writable = false},
    %arg2: tensor<256x256xf32> {bufferization.buffer_layout = affine_map<(d0, d1) -> (d0, d1)>, bufferization.writable = true})
  -> tensor<256x256xf32>
{
  %c0 = arith.constant 0 : index
  %cst = arith.constant 0.000000e+00 : f32
  %cst_0 = arith.constant 1.000000e+00 : f32
  %0 = bufferization.alloc_tensor() : tensor<256x256xf32>

  // CHECK: {__inplace_operands_attr__ = ["false"]}
  %4 = tensor.extract_slice %0[0, 0] [16, 256] [1, 1] : tensor<256x256xf32> to tensor<16x256xf32>
  // CHECK: {__inplace_operands_attr__ = ["none", "true"]}
  %1 = linalg.fill ins(%cst : f32) outs(%0 : tensor<256x256xf32>) -> tensor<256x256xf32>
  // CHECK: {__inplace_operands_attr__ = ["true"]}
  %3 = tensor.extract_slice %1[0, 0] [256, 16] [1, 1] : tensor<256x256xf32> to tensor<256x16xf32>
  // CHECK: {__inplace_operands_attr__ = ["none", "true"]}
  %2 = linalg.fill ins(%cst_0 : f32) outs(%4 : tensor<16x256xf32>) -> tensor<16x256xf32>
  // CHECK: {__inplace_operands_attr__ = ["true", "true", "true"]}
  %5 = linalg.matmul ins(%3, %2 : tensor<256x16xf32>, tensor<16x256xf32>) outs(%arg2 : tensor<256x256xf32>) -> tensor<256x256xf32>
  return %5 : tensor<256x256xf32>
}

// -----

// CHECK-LABEL: func @fill_extract_matmul_
func.func @fill_extract_matmul_4213(
    %arg0: tensor<518x518xf32> {bufferization.buffer_layout = affine_map<(d0, d1) -> (d0, d1)>, bufferization.writable = false},
    %arg1: tensor<518x518xf32> {bufferization.buffer_layout = affine_map<(d0, d1) -> (d0, d1)>, bufferization.writable = false},
    %arg2: tensor<256x256xf32> {bufferization.buffer_layout = affine_map<(d0, d1) -> (d0, d1)>, bufferization.writable = true})
  -> tensor<256x256xf32>
{
  %c0 = arith.constant 0 : index
  %cst = arith.constant 0.000000e+00 : f32
  %cst_0 = arith.constant 1.000000e+00 : f32
  %0 = bufferization.alloc_tensor() : tensor<256x256xf32>

  // CHECK: {__inplace_operands_attr__ = ["false"]}
  %4 = tensor.extract_slice %0[0, 0] [16, 256] [1, 1] : tensor<256x256xf32> to tensor<16x256xf32>
  // CHECK: {__inplace_operands_attr__ = ["none", "true"]}
  %2 = linalg.fill ins(%cst_0 : f32) outs(%4 : tensor<16x256xf32>) -> tensor<16x256xf32>
  // CHECK: {__inplace_operands_attr__ = ["none", "true"]}
  %1 = linalg.fill ins(%cst : f32) outs(%0 : tensor<256x256xf32>) -> tensor<256x256xf32>
  // CHECK: {__inplace_operands_attr__ = ["true"]}
  %3 = tensor.extract_slice %1[0, 0] [256, 16] [1, 1] : tensor<256x256xf32> to tensor<256x16xf32>
  // CHECK: {__inplace_operands_attr__ = ["true", "true", "true"]}
  %5 = linalg.matmul ins(%3, %2 : tensor<256x16xf32>, tensor<16x256xf32>) outs(%arg2 : tensor<256x256xf32>) -> tensor<256x256xf32>
  return %5 : tensor<256x256xf32>
}

// -----

// CHECK-LABEL: func @fill_extract_matmul_
func.func @fill_extract_matmul_4231(
    %arg0: tensor<518x518xf32> {bufferization.buffer_layout = affine_map<(d0, d1) -> (d0, d1)>, bufferization.writable = false},
    %arg1: tensor<518x518xf32> {bufferization.buffer_layout = affine_map<(d0, d1) -> (d0, d1)>, bufferization.writable = false},
    %arg2: tensor<256x256xf32> {bufferization.buffer_layout = affine_map<(d0, d1) -> (d0, d1)>, bufferization.writable = true})
  -> tensor<256x256xf32>
{
  %c0 = arith.constant 0 : index
  %cst = arith.constant 0.000000e+00 : f32
  %cst_0 = arith.constant 1.000000e+00 : f32
  %0 = bufferization.alloc_tensor() : tensor<256x256xf32>

  // CHECK: {__inplace_operands_attr__ = ["false"]}
  %4 = tensor.extract_slice %0[0, 0] [16, 256] [1, 1] : tensor<256x256xf32> to tensor<16x256xf32>
  // CHECK: {__inplace_operands_attr__ = ["none", "true"]}
  %2 = linalg.fill ins(%cst_0 : f32) outs(%4 : tensor<16x256xf32>) -> tensor<16x256xf32>
  // CHECK: {__inplace_operands_attr__ = ["true"]}
  %3 = tensor.extract_slice %0[0, 0] [256, 16] [1, 1] : tensor<256x256xf32> to tensor<256x16xf32>
  // CHECK: {__inplace_operands_attr__ = ["none", "true"]}
  %1 = linalg.fill ins(%cst : f32) outs(%3 : tensor<256x16xf32>) -> tensor<256x16xf32>
  // CHECK: {__inplace_operands_attr__ = ["true", "true", "true"]}
  %5 = linalg.matmul ins(%1, %2 : tensor<256x16xf32>, tensor<16x256xf32>) outs(%arg2 : tensor<256x256xf32>) -> tensor<256x256xf32>
  return %5 : tensor<256x256xf32>
}

// -----

// CHECK-LABEL: func @fill_extract_matmul_
func.func @fill_extract_matmul_4312(
    %arg0: tensor<518x518xf32> {bufferization.buffer_layout = affine_map<(d0, d1) -> (d0, d1)>, bufferization.writable = false},
    %arg1: tensor<518x518xf32> {bufferization.buffer_layout = affine_map<(d0, d1) -> (d0, d1)>, bufferization.writable = false},
    %arg2: tensor<256x256xf32> {bufferization.buffer_layout = affine_map<(d0, d1) -> (d0, d1)>, bufferization.writable = true})
  -> tensor<256x256xf32>
{
  %c0 = arith.constant 0 : index
  %cst = arith.constant 0.000000e+00 : f32
  %cst_0 = arith.constant 1.000000e+00 : f32
  %0 = bufferization.alloc_tensor() : tensor<256x256xf32>

  // CHECK: {__inplace_operands_attr__ = ["false"]}
  %4 = tensor.extract_slice %0[0, 0] [16, 256] [1, 1] : tensor<256x256xf32> to tensor<16x256xf32>
  // CHECK: {__inplace_operands_attr__ = ["true"]}
  %3 = tensor.extract_slice %0[0, 0] [256, 16] [1, 1] : tensor<256x256xf32> to tensor<256x16xf32>
  // CHECK: {__inplace_operands_attr__ = ["none", "true"]}
  %1 = linalg.fill ins(%cst : f32) outs(%3 : tensor<256x16xf32>) -> tensor<256x16xf32>
  // CHECK: {__inplace_operands_attr__ = ["none", "true"]}
  %2 = linalg.fill ins(%cst_0 : f32) outs(%4 : tensor<16x256xf32>) -> tensor<16x256xf32>
  // CHECK: {__inplace_operands_attr__ = ["true", "true", "true"]}
  %5 = linalg.matmul ins(%1, %2 : tensor<256x16xf32>, tensor<16x256xf32>) outs(%arg2 : tensor<256x256xf32>) -> tensor<256x256xf32>
  return %5 : tensor<256x256xf32>
}

// -----

// CHECK-LABEL: func @fill_extract_matmul_
func.func @fill_extract_matmul_4321(
    %arg0: tensor<518x518xf32> {bufferization.buffer_layout = affine_map<(d0, d1) -> (d0, d1)>, bufferization.writable = false},
    %arg1: tensor<518x518xf32> {bufferization.buffer_layout = affine_map<(d0, d1) -> (d0, d1)>, bufferization.writable = false},
    %arg2: tensor<256x256xf32> {bufferization.buffer_layout = affine_map<(d0, d1) -> (d0, d1)>, bufferization.writable = true})
  -> tensor<256x256xf32>
{
  %c0 = arith.constant 0 : index
  %cst = arith.constant 0.000000e+00 : f32
  %cst_0 = arith.constant 1.000000e+00 : f32
  %0 = bufferization.alloc_tensor() : tensor<256x256xf32>

  // CHECK: {__inplace_operands_attr__ = ["false"]}
  %4 = tensor.extract_slice %0[0, 0] [16, 256] [1, 1] : tensor<256x256xf32> to tensor<16x256xf32>
  // CHECK: {__inplace_operands_attr__ = ["true"]}
  %3 = tensor.extract_slice %0[0, 0] [256, 16] [1, 1] : tensor<256x256xf32> to tensor<256x16xf32>
  // CHECK: {__inplace_operands_attr__ = ["none", "true"]}
  %2 = linalg.fill ins(%cst_0 : f32) outs(%4 : tensor<16x256xf32>) -> tensor<16x256xf32>
  // CHECK: {__inplace_operands_attr__ = ["none", "true"]}
  %1 = linalg.fill ins(%cst : f32) outs(%3 : tensor<256x16xf32>) -> tensor<256x16xf32>
  // CHECK: {__inplace_operands_attr__ = ["true", "true", "true"]}
  %5 = linalg.matmul ins(%1, %2 : tensor<256x16xf32>, tensor<16x256xf32>) outs(%arg2 : tensor<256x256xf32>) -> tensor<256x256xf32>
  return %5 : tensor<256x256xf32>
}