File: one-shot-bufferize.mlir

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (437 lines) | stat: -rw-r--r-- 16,702 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
// RUN: mlir-opt %s -one-shot-bufferize="allow-return-allocs bufferize-function-boundaries" -canonicalize -buffer-loop-hoisting -drop-equivalent-buffer-results -split-input-file | FileCheck %s

// Run fuzzer with different seeds.
// RUN: mlir-opt %s -one-shot-bufferize="allow-return-allocs test-analysis-only analysis-fuzzer-seed=23 bufferize-function-boundaries" -split-input-file -o /dev/null
// RUN: mlir-opt %s -one-shot-bufferize="allow-return-allocs test-analysis-only analysis-fuzzer-seed=59 bufferize-function-boundaries" -split-input-file -o /dev/null
// RUN: mlir-opt %s -one-shot-bufferize="allow-return-allocs test-analysis-only analysis-fuzzer-seed=91 bufferize-function-boundaries" -split-input-file -o /dev/null

// Test bufferization using memref types that have no layout map.
// RUN: mlir-opt %s -one-shot-bufferize="allow-return-allocs unknown-type-conversion=identity-layout-map function-boundary-type-conversion=identity-layout-map bufferize-function-boundaries" -drop-equivalent-buffer-results -split-input-file | FileCheck %s --check-prefix=CHECK-NO-LAYOUT-MAP

// TODO: Some test cases from this file should be moved to other dialects.

// CHECK-LABEL: func @fill_inplace(
//  CHECK-SAME:   %[[A:[a-zA-Z0-9]*]]: memref<?xf32, strided<[?], offset: ?>>
// CHECK-NO-LAYOUT-MAP-LABEL: func @fill_inplace(%{{.*}}: memref<?xf32>) {
func.func @fill_inplace(
    %A : tensor<?xf32> {bufferization.writable = true})
  -> tensor<?xf32>
{
  //     CHECK: %[[F0:.*]] = arith.constant 0.000000e+00 : f32
  %f0 = arith.constant 0.0 : f32

  /// Inplaceable, no alloc
  // CHECK-NOT: alloc
  //     CHECK: linalg.fill ins(%[[F0]] : f32) outs(%[[A]] : memref<?xf32, strided<[?], offset: ?>>)
  %r = linalg.fill ins(%f0 : f32) outs(%A : tensor<?xf32>) -> tensor<?xf32>

  //     CHECK: return
  // CHECK-NOT: tensor
  return %r: tensor<?xf32>
}

// -----

/// No bufferization.writable flag, must allocate.
// CHECK-LABEL: func @not_inplace(
//  CHECK-SAME:   %[[A:[a-zA-Z0-9]*]]: memref<?xf32, strided<[?], offset: ?>>) -> memref<?xf32> {
// CHECK-NO-LAYOUT-MAP-LABEL: func @not_inplace(%{{.*}}: memref<?xf32>) -> memref<?xf32>
func.func @not_inplace(
    %A : tensor<?xf32> {bufferization.writable = false})
  -> tensor<?xf32>
{
  //     CHECK: %[[F0:.*]] = arith.constant 0.000000e+00 : f32
  %f0 = arith.constant 0.0 : f32

  //     CHECK: %[[D0:.*]] = memref.dim %[[A]], {{.*}} : memref<?xf32, strided<[?], offset: ?>>
  //     CHECK: %[[ALLOC:.*]] = memref.alloc(%[[D0]]) {alignment = 64 : i64} : memref<?xf32>
  //     CHECK: linalg.fill ins(%[[F0]] : f32) outs(%[[ALLOC]] : memref<?xf32>)
  %r = linalg.fill ins(%f0 : f32) outs(%A : tensor<?xf32>) -> tensor<?xf32>

  // CHECK-NOT: dealloc
  //     CHECK: return %[[ALLOC]] : memref<?xf32>
  return %r: tensor<?xf32>
}

// -----


// CHECK-LABEL: func @not_inplace
//  CHECK-SAME:   %[[A:[a-zA-Z0-9]*]]: memref<?x?xf32, strided<[?, ?], offset: ?>>) {
// CHECK-NO-LAYOUT-MAP-LABEL: func @not_inplace(%{{.*}}: memref<?x?xf32>) {
func.func @not_inplace(
    %A : tensor<?x?xf32> {bufferization.writable = true})
  -> tensor<?x?xf32>
{
  %f0 = arith.constant 0.0 : f32

  /// Cross-op multiple uses of %A, the first op which has interfering reads must alloc.
  //       CHECK: %[[ALLOC:.*]] = memref.alloc
  //       CHECK: linalg.fill ins({{.*}}{{.*}}outs(%[[ALLOC]]
  %f = linalg.fill ins(%f0 : f32) outs(%A : tensor<?x?xf32>) -> tensor<?x?xf32>

  /// The second op has no interfering reads and can reuse.
  //   CHECK-NOT: alloc
  //       CHECK: linalg.matmul ins(%[[ALLOC]], %[[ALLOC]]{{.*}}) outs(%[[A]]
  %r = linalg.matmul  ins(%f, %f: tensor<?x?xf32>, tensor<?x?xf32>)
                     outs(%A: tensor<?x?xf32>)
    -> tensor<?x?xf32>

  //     CHECK: memref.dealloc %[[ALLOC]]
  //     CHECK: return
  // CHECK-NOT: tensor
  return %r: tensor<?x?xf32>
}

// -----

// CHECK-LABEL: func @not_inplace
func.func @not_inplace(
    %A : tensor<?x?xf32> {bufferization.writable = true}) -> tensor<?x?xf32> {
  /// Within op multiple uses of %A, must alloc.
  // CHECK: alloc
  %r = linalg.matmul  ins(%A, %A: tensor<?x?xf32>, tensor<?x?xf32>)
                     outs(%A: tensor<?x?xf32>)
    -> tensor<?x?xf32>
  // CHECK-NOT: dealloc
  return %r: tensor<?x?xf32>
}
// -----

// CHECK-LABEL: func @vec_inplace
func.func @vec_inplace(
    %A : tensor<?xf32> {bufferization.writable = true}, %vec : vector<4xf32>)
  -> tensor<?xf32>
{
  %c0 = arith.constant 0 : index

  // CHECK-NOT: alloc
  %r = vector.transfer_write %vec, %A[%c0] : vector<4xf32>, tensor<?xf32>

  //     CHECK: return
  // CHECK-NOT: tensor
  return %r: tensor<?xf32>
}

// -----

// CHECK-LABEL: func @vec_not_inplace
//  CHECK-SAME:   %[[A:[a-zA-Z0-9]*]]: memref<?xf32, strided<[?], offset: ?>>
func.func @vec_not_inplace(
    %A : tensor<?xf32> {bufferization.writable = true}, %vec : vector<4xf32>)
  -> (tensor<?xf32>, tensor<?xf32>)
{
  %c0 = arith.constant 0 : index
  %c1 = arith.constant 1 : index

  /// Cross-op multiple uses of %A, the first vector.transfer which has interfering reads must alloc.
  //      CHECK: %[[ALLOC:.*]] = memref.alloc
  //      CHECK: memref.copy {{.*}}, %[[ALLOC]]
  // CHECK-NEXT: vector.transfer_write {{.*}}, %[[ALLOC]]
  %r0 = vector.transfer_write %vec, %A[%c0] : vector<4xf32>, tensor<?xf32>

  /// The second vector.transfer has no interfering reads and can reuse the buffer.
  //  CHECK-NOT: alloc
  // CHECK-NEXT: vector.transfer_write {{.*}}, %[[A]]
  %r1 = vector.transfer_write %vec, %A[%c1] : vector<4xf32>, tensor<?xf32>

  //     CHECK: return
  // CHECK-NOT: tensor
  return %r0, %r1: tensor<?xf32>, tensor<?xf32>
}

// -----

//      CHECK: func @matmul(
// CHECK-SAME:   %[[A:[0-9a-zA-Z]*]]: memref<128x256xf32>
// CHECK-SAME:   %[[B:[0-9a-zA-Z]*]]: memref<256x192xf32>
// CHECK-SAME:   %[[C:[0-9a-zA-Z]*]]: memref<128x192xf32>
func.func @matmul(
    %A: tensor<128x256xf32> {bufferization.buffer_layout = affine_map<(d0, d1) -> (d0, d1)>, bufferization.writable = false},
    %B: tensor<256x192xf32> {bufferization.buffer_layout = affine_map<(d0, d1) -> (d0, d1)>, bufferization.writable = false},
    %C: tensor<128x192xf32> {bufferization.buffer_layout = affine_map<(d0, d1) -> (d0, d1)>, bufferization.writable = true})
  -> tensor<128x192xf32> {
  %c0 = arith.constant 0 : index
  %c256 = arith.constant 256 : index
  %c32 = arith.constant 32 : index
  %cst = arith.constant 0.000000e+00 : f32
  %c128 = arith.constant 128 : index
  %c192 = arith.constant 192 : index
  %c8 = arith.constant 8 : index
  %c16 = arith.constant 16 : index

  // Hoisted alloc.
  // CHECK: %[[ALLOC:.*]] = memref.alloc() {alignment = 64 : i64} : memref<128x192xf32>
  // CHECK: memref.copy %[[C]], %[[ALLOC]]

  // CHECK: scf.for %[[I:.*]] =
  %0 = scf.for %arg3 = %c0 to %c128 step %c8 iter_args(%arg4 = %C) -> (tensor<128x192xf32>) {
    %1 = tensor.extract_slice %A[%arg3, 0] [8, 256] [1, 1] :
      tensor<128x256xf32> to tensor<8x256xf32>

    // CHECK: scf.for %[[J:.*]] =
    %2 = scf.for %arg5 = %c0 to %c192 step %c16 iter_args(%arg6 = %arg4) -> (tensor<128x192xf32>) {
      %3 = tensor.extract_slice %B[0, %arg5] [256, 16] [1, 1] :
        tensor<256x192xf32> to tensor<256x16xf32>

      // C was already replaced with a copy by preprocessing, so no copy is
      // needed here.
      // CHECK: %[[C_SLICE:.*]] = memref.subview %[[ALLOC]]
      %4 = tensor.extract_slice %C[%arg3, %arg5] [8, 16] [1, 1] :
        tensor<128x192xf32> to tensor<8x16xf32>

      // linalg.fill is inplace.
      // CHECK: linalg.fill ins(%{{.*}} : f32) outs(%[[C_SLICE]]
      %5 = linalg.fill ins(%cst : f32) outs(%4 : tensor<8x16xf32>) -> tensor<8x16xf32>

      // CHECK: scf.for %[[K:.*]] =
      %6 = scf.for %arg7 = %c0 to %c256 step %c32 iter_args(%arg8 = %5) -> (tensor<8x16xf32>) {
        %8 = tensor.extract_slice %1[0, %arg7] [8, 32] [1, 1] :
          tensor<8x256xf32> to tensor<8x32xf32>
        %9 = tensor.extract_slice %3[%arg7, 0] [32, 16] [1, 1] :
          tensor<256x16xf32> to tensor<32x16xf32>

        // linalg.matmul is inplace as well as the enclosing scf.for.
        // CHECK: linalg.matmul ins({{.*}} outs(%[[C_SLICE]]
        %10 = linalg.matmul ins(%8, %9 : tensor<8x32xf32>, tensor<32x16xf32>)
                           outs(%arg8 : tensor<8x16xf32>)
          -> tensor<8x16xf32>
        scf.yield %10 : tensor<8x16xf32>
      }

      // insert_slice is inplace but its source comes from an equivalent buffer
      // that is not in place. So we must insert a copy of the small buffer into
      // the bigger buffer.
      // CHECK: %[[T:.*]] = memref.subview %[[C]][%[[I]], %[[J]]] [8, 16] [1, 1]
      // CHECK: memref.copy %[[C_SLICE]], %[[T]]
      %7 = tensor.insert_slice %6 into %arg6[%arg3, %arg5] [8, 16] [1, 1] :
        tensor<8x16xf32> into tensor<128x192xf32>

      scf.yield %7 : tensor<128x192xf32>
    }
    scf.yield %2 : tensor<128x192xf32>
  }

  // CHECK: memref.dealloc %[[ALLOC]]
  return %0 : tensor<128x192xf32>
}

// -----

/// This test just checks the produced IR is valid and does not have dominance
/// errors in the def-use chains.

// CHECK-LABEL: func @dominance_violation_bug_1
func.func @dominance_violation_bug_1(
    %A : tensor<?x?xf32> {bufferization.writable = false},
    %idx : index)
  -> tensor<?x?xf32>
{
  %f0 = arith.constant 0.0 : f32

  %sA = tensor.extract_slice %A[0, 0][%idx, %idx][1, 1] : tensor<?x?xf32> to tensor<?x?xf32>
  %ssA = tensor.extract_slice %sA[0, 0][4, 4][1, 1] : tensor<?x?xf32> to tensor<4x4xf32>
  %FA = linalg.fill ins(%f0 : f32) outs(%ssA : tensor<4x4xf32>) -> tensor<4x4xf32>
  %rsA = tensor.insert_slice %FA into %sA[0, 0][4, 4][1, 1] : tensor<4x4xf32> into tensor<?x?xf32>
  %rA = tensor.insert_slice %rsA into %A[0, 0][%idx, %idx][1, 1] : tensor<?x?xf32> into tensor<?x?xf32>

  return %rA : tensor<?x?xf32>
}

// -----

func.func @gather_like(
    %arg0 : tensor<?x?xf32> {bufferization.writable = false},
    %arg1 : tensor<?xi32> {bufferization.writable = false},
    %arg2 : tensor<?x?xf32> {bufferization.writable = true})
  -> tensor<?x?xf32>
{
  %0 = linalg.generic {
      indexing_maps = [affine_map<(d0, d1) -> (d0)>,
                       affine_map<(d0, d1) -> (d0, d1)>],
      iterator_types = ["parallel", "parallel"]}
      ins(%arg1 : tensor<?xi32>) outs(%arg2 : tensor<?x?xf32>) {
      ^bb0(%arg3: i32, %arg4 : f32):
        %iv1 = linalg.index 1 : index
        %1 = arith.index_cast %arg3: i32 to index
        %2 = tensor.extract %arg0[%1, %iv1] : tensor<?x?xf32>
        linalg.yield %2 : f32
      } -> tensor<?x?xf32>
  return %0 : tensor<?x?xf32>
}
// CHECK-LABEL: func @gather_like(
//  CHECK-SAME:     %[[ARG0:[a-zA-Z0-9]+]]: memref<?x?xf32,
//  CHECK-SAME:     %[[ARG1:.+]]: memref<?xi32
//  CHECK-SAME:     %[[ARG2:.+]]: memref<?x?xf32
//  CHECK-SAME:   ) {
//       CHECK:   linalg.generic
//  CHECK-SAME:       ins(%[[ARG1]] :
//  CHECK-SAME:       outs(%[[ARG2]] :
//       CHECK:     %[[YIELD:.+]] = memref.load %[[ARG0]]
//       CHECK:     linalg.yield %[[YIELD]]

// -----

// CHECK-LABEL: func @linalg_op_bufferizes_inplace_with_input
//  CHECK-SAME:     %[[t1:.*]]: memref<?x?xf32, strided{{.*}}>, %[[t2:.*]]: memref<?xf32, strided{{.*}}>, %[[t3:.*]]: memref<?x?xf32, strided{{.*}}>
func.func @linalg_op_bufferizes_inplace_with_input(
    %t1: tensor<?x?xf32> {bufferization.writable = true},
    %t2: tensor<?xf32> {bufferization.writable = true},
    %t3: tensor<?x?xf32> {bufferization.writable = true},
    %s1: index, %s2: index, %cst: f32)
  -> tensor<?x?xf32>
{
  // CHECK: linalg.generic {{.*}} ins(%[[t1]], %[[t2]] : {{.*}}) outs(%[[t3]] : {{.*}})
  %r = linalg.generic {
    indexing_maps = [affine_map<(d0, d1) -> (d0, d1)>,
                     affine_map<(d0, d1) -> (d1)>,
                     affine_map<(d0, d1)-> (d0, d1)>],
    iterator_types = ["parallel", "parallel"]}
    ins(%t1, %t2 : tensor<?x?xf32>, tensor<?xf32>)
    outs(%t3 : tensor<?x?xf32>) {
      ^bb0(%arg0 : f32, %arg1 : f32, %arg2 : f32) :
        %add = arith.addf %arg0, %arg1 : f32
        linalg.yield %add : f32
    } -> tensor<?x?xf32>
  return %r : tensor<?x?xf32>
}

// -----

#accesses = [
  affine_map<(i) -> (i)>
]
#trait = {
  indexing_maps = #accesses,
  iterator_types = ["parallel"]
}

// CHECK-LABEL: func @op_is_reading_but_following_ops_are_not
//  CHECK-SAME:     %[[t0:.*]]: memref<?xf32
func.func @op_is_reading_but_following_ops_are_not(
    %t0 : tensor<?xf32> {bufferization.writable = false},
    %cst : f32)
  -> tensor<?xf32>
{
  // Make sure that a copy is inserted here.
  // CHECK: %[[ALLOC:.*]] = memref.alloc
  // CHECK: memref.copy %[[t0]], %[[ALLOC]]
  // CHECK: linalg.generic {{.*}} outs(%[[ALLOC]] : memref
  %r0 =linalg.generic #trait outs (%t0 : tensor<?xf32>) {
      ^bb(%0: f32) :
        %a = arith.addf %cst, %0 : f32
        linalg.yield %a : f32
    } -> (tensor<?xf32>)

  // CHECK: linalg.generic {{.*}} outs(%[[ALLOC]] : memref
  %r1 = linalg.generic #trait outs (%r0 : tensor<?xf32>) {
      ^bb(%0: f32) :
        linalg.yield %cst : f32
    } -> (tensor<?xf32>)

  // CHECK: return %[[ALLOC]]
  return %r1 : tensor<?xf32>
}

// -----

// CHECK-LABEL: func @map_binary
// CHECK-SAME:  %[[LHS:[0-9a-zA-Z]*]]: memref<64xf32
// CHECK-SAME:  %[[RHS:[0-9a-zA-Z]*]]: memref<64xf32
func.func @map_binary(%lhs: tensor<64xf32>, %rhs: tensor<64xf32>,
                      %init: tensor<64xf32>) -> tensor<64xf32> {
   // CHECK:      linalg.map { arith.addf } ins(%[[LHS]], %[[RHS]] : memref<64xf32
   %add = linalg.map
          ins(%lhs, %rhs: tensor<64xf32>, tensor<64xf32>)
          outs(%init:tensor<64xf32>)
          (%lhs_elem: f32, %rhs_elem: f32) {
            %0 = arith.addf %lhs_elem, %rhs_elem: f32
            linalg.yield %0: f32
          }
  func.return %add : tensor<64xf32>
}

// -----

// CHECK-LABEL: func @reduce
// CHECK-SAME:  %[[INPUT:.*]]: memref<16x32x64xf32
func.func @reduce(%input: tensor<16x32x64xf32>,
                  %init: tensor<16x64xf32>) -> tensor<16x64xf32> {
  // CHECK:     linalg.reduce { arith.addf } ins(%[[INPUT]] : memref<16x32x64xf32
  %reduce = linalg.reduce
      ins(%input:tensor<16x32x64xf32>)
      outs(%init:tensor<16x64xf32>)
      dimensions = [1]
      (%in: f32, %out: f32) {
        %0 = arith.addf %out, %in: f32
        linalg.yield %0: f32
      }
  func.return %reduce : tensor<16x64xf32>
}

// -----

// CHECK-LABEL: func @transpose
// CHECK-SAME:  %[[ARG0:.*]]: memref<16x32x64xf32
func.func @transpose(%input: tensor<16x32x64xf32>,
                     %init: tensor<32x64x16xf32>) -> tensor<32x64x16xf32> {
  // CHECK:      linalg.transpose ins(%[[ARG0]] : memref<16x32x64xf32
  %transpose = linalg.transpose
      ins(%input:tensor<16x32x64xf32>)
      outs(%init:tensor<32x64x16xf32>)
      permutation = [1, 2, 0]
  func.return %transpose : tensor<32x64x16xf32>
}

// -----

// CHECK-LABEL: func @broadcast
// CHECK-SAME:  %[[ARG0:.*]]: memref<8x32xf32
func.func @broadcast(%input: tensor<8x32xf32>,
                     %init: tensor<8x16x32xf32>) -> tensor<8x16x32xf32> {
  %bcast = linalg.broadcast
      ins(%input:tensor<8x32xf32>)
      outs(%init:tensor<8x16x32xf32>)
      dimensions = [1]
  func.return %bcast : tensor<8x16x32xf32>
}

// -----

//===----------------------------------------------------------------------===//
// AllocTensorOp elimination would produce SSA violations for the example below.
//===----------------------------------------------------------------------===//

func.func @depthwise_conv_1d_nwc_wc(%arg0: index, %arg1: index, %arg2: tensor<8x18x32xf32>)
    -> tensor<?x1x6x8xf32> {
  %c0 = arith.constant 0 : index
  %c32 = arith.constant 32 : index
  %c8 = arith.constant 8 : index
  %0 = bufferization.alloc_tensor() : tensor<4x1x6x8xf32>
  %1 = tensor.cast %0 : tensor<4x1x6x8xf32> to tensor<?x1x6x8xf32>
  %2 = bufferization.alloc_tensor() : tensor<1x6x8xf32>
  %3 = scf.for %arg3 = %c0 to %c32 step %c8 iter_args(%arg4 = %1) -> (tensor<?x1x6x8xf32>) {
    %4 = affine.apply affine_map<(d0) -> (d0 ceildiv 8)>(%arg3)
    %5 = tensor.insert_slice %2 into %arg4[%4,0, 0, 0] [1, 1, 6, 8] [1, 1, 1, 1] :
      tensor<1x6x8xf32> into tensor<?x1x6x8xf32>
    scf.yield %5 : tensor<?x1x6x8xf32>
  }
  return %3 : tensor<?x1x6x8xf32>
}

// -----

// CHECK-LABEL: func @do_not_copy_alloc_tensors(
func.func @do_not_copy_alloc_tensors(%f1: f32, %f2: f32, %idx: index)
  -> (tensor<5xf32>, tensor<5xf32>)
{
  // CHECK: memref.alloc
  // CHECK: memref.alloc
  // CHECK-NOT: copy
  // CHECK: memref.store
  // CHECK: memref.store
  %0 = bufferization.alloc_tensor() : tensor<5xf32>
  %1 = tensor.insert %f1 into %0[%idx] : tensor<5xf32>
  %2 = tensor.insert %f2 into %0[%idx] : tensor<5xf32>
  return %1, %2 : tensor<5xf32>, tensor<5xf32>
}