File: transform-op-generalize.mlir

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (32 lines) | stat: -rw-r--r-- 1,217 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
// RUN: mlir-opt --test-transform-dialect-interpreter %s | FileCheck %s

// CHECK-LABEL: func.func @generalize_unary
func.func @generalize_unary(%arg0: tensor<?x?xf32>, %arg1: tensor<?x?xf32>) -> tensor<?x?xf32> {

  // CHECK-NOT:   linalg.elemwise_unary
  //     CHECK:   linalg.generic
  %0 = linalg.elemwise_unary ins(%arg0 : tensor<?x?xf32>)
                             outs(%arg1: tensor<?x?xf32>) -> tensor<?x?xf32>
  return %0 : tensor<?x?xf32>
}

// CHECK-LABEL: func @map_no_inputs(
func.func @map_no_inputs(%input: tensor<16x32x64xf32>,
                  %init: tensor<16x64xf32>) -> tensor<16x64xf32> {
  // CHECK-NOT:   linalg.map
  //     CHECK:   linalg.generic
  %reduce = linalg.reduce
      ins(%input:tensor<16x32x64xf32>)
      outs(%init:tensor<16x64xf32>)
      dimensions = [1]
      (%in: f32, %out: f32) {
        %0 = arith.addf %out, %in: f32
        linalg.yield %0: f32
      }
  func.return %reduce : tensor<16x64xf32>
}
transform.sequence failures(propagate) {
^bb1(%arg1: !transform.any_op):
  %0 = transform.structured.match interface{LinalgOp} in %arg1 : (!transform.any_op) -> !transform.any_op
  %1 = transform.structured.generalize %0 : (!transform.any_op) -> !transform.any_op
}