1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
|
// RUN: mlir-opt --test-transform-dialect-interpreter -split-input-file -verify-diagnostics %s | FileCheck %s
#map = affine_map<()[s0] -> (-s0 + 12, 7)>
// CHECK-LABEL: @static_sizes_output_divisible
func.func @static_sizes_output_divisible(%arg0: tensor<24x12xf32>,
%arg1: tensor<12x25xf32>,
%arg2: tensor<24x25xf32>,
%iv0 : index, %iv1 : index, %iv2 : index) -> tensor<24x25xf32> {
%0 = affine.min #map()[%iv2]
// CHECK: %[[T0:.*]] = tensor.extract_slice %
// CHECK: %[[T1:.*]] = tensor.extract_slice %
// CHECK: %[[T2:.*]] = tensor.extract_slice %
%1 = tensor.extract_slice %arg0[%iv0, %iv2] [4, %0] [1, 1] : tensor<24x12xf32> to tensor<4x?xf32>
%2 = tensor.extract_slice %arg1[%iv2, %iv1] [%0, 5] [1, 1] : tensor<12x25xf32> to tensor<?x5xf32>
%3 = tensor.extract_slice %arg2[%iv0, %iv1] [4, 5] [1, 1] : tensor<24x25xf32> to tensor<4x5xf32>
// CHECK-DAG: %[[CST:.*]] = arith.constant 0.
// CHECK: %[[T3:.*]] = tensor.pad %[[T0]] nofold
// CHECK: tensor.yield %[[CST]]
// CHECK: %[[T4:.*]] = tensor.pad %[[T1]] nofold
// CHECK: %[[T5:.*]] = linalg.matmul
// CHECK-SAME: ins(%[[T3]], %[[T4]] : tensor<4x7xf32>, tensor<7x5xf32>)
// CHECK-SAME: outs(%[[T2]] : tensor<4x5xf32>)
%4 = linalg.matmul ins(%1, %2 : tensor<4x?xf32>, tensor<?x5xf32>) outs(%3 : tensor<4x5xf32>) -> tensor<4x5xf32>
%5 = tensor.insert_slice %4 into %arg2[%iv0, %iv1] [4, 5] [1, 1] : tensor<4x5xf32> into tensor<24x25xf32>
func.return %5 : tensor<24x25xf32>
}
transform.sequence failures(propagate) {
^bb1(%arg1: !transform.any_op):
%0 = transform.structured.match ops{["linalg.matmul"]} in %arg1 : (!transform.any_op) -> !transform.any_op
%padded, %pad = transform.structured.pad %0 {
padding_values=[0.0 : f32, 0.0 : f32, 0.0 : f32],
padding_dimensions=[0, 1, 2],
pack_paddings=[1, 1, 0]
} : (!transform.any_op) -> (!transform.any_op, !transform.any_op)
}
// -----
#map = affine_map<()[s0] -> (-s0 + 12, 7)>
// CHECK-LABEL: @pad_to_multiple
func.func @pad_to_multiple(%arg0: tensor<24x12xf32>,
%arg1: tensor<12x25xf32>,
%arg2: tensor<24x25xf32>,
%iv0 : index, %iv1 : index, %iv2 : index) -> tensor<24x25xf32> {
%0 = affine.min #map()[%iv2]
%1 = tensor.extract_slice %arg0[%iv0, %iv2] [4, %0] [1, 1] : tensor<24x12xf32> to tensor<4x?xf32>
%2 = tensor.extract_slice %arg1[%iv2, %iv1] [%0, 5] [1, 1] : tensor<12x25xf32> to tensor<?x5xf32>
%3 = tensor.extract_slice %arg2[%iv0, %iv1] [4, 5] [1, 1] : tensor<24x25xf32> to tensor<4x5xf32>
// CHECK: linalg.matmul
// CHECK-SAME: ins(%{{.*}}, %{{.*}} : tensor<4x7xf32>, tensor<7x6xf32>)
// CHECK-SAME: outs(%{{.*}} : tensor<4x6xf32>)
%4 = linalg.matmul ins(%1, %2 : tensor<4x?xf32>, tensor<?x5xf32>) outs(%3 : tensor<4x5xf32>) -> tensor<4x5xf32>
%5 = tensor.insert_slice %4 into %arg2[%iv0, %iv1] [4, 5] [1, 1] : tensor<4x5xf32> into tensor<24x25xf32>
func.return %5 : tensor<24x25xf32>
}
transform.sequence failures(propagate) {
^bb1(%arg1: !transform.any_op):
%0 = transform.structured.match ops{["linalg.matmul"]} in %arg1 : (!transform.any_op) -> !transform.any_op
%padded, %pad = transform.structured.pad %0 {
padding_values=[0.0 : f32, 0.0 : f32, 0.0 : f32],
padding_dimensions=[0, 1, 2],
pad_to_multiple_of=[2, 2, 1],
pack_paddings=[1, 1, 0]
} : (!transform.any_op) -> (!transform.any_op, !transform.any_op)
}
// -----
#map = affine_map<()[s0] -> (-s0 + 12, 7)>
// CHECK-LABEL: @static_sizes_output_divisible_on_empty_op
func.func @static_sizes_output_divisible_on_empty_op(%arg0: tensor<24x12xf32>,
%arg1: tensor<12x25xf32>, %arg2: tensor<24x25xf32>, %iv0: index,
%iv1: index, %iv2: index) -> tensor<24x25xf32> {
%0 = affine.min #map()[%iv2]
// CHECK: %[[T0:.*]] = tensor.empty
// CHECK: %[[T1:.*]] = tensor.empty
// CHECK: %[[T2:.*]] = tensor.empty
%1 = tensor.empty(%0) : tensor<4x?xf32>
%2 = tensor.empty(%0) : tensor<?x5xf32>
%3 = tensor.empty() : tensor<4x5xf32>
// CHECK-DAG: %[[CST:.*]] = arith.constant 0.
// CHECK: %[[T3:.*]] = tensor.pad %[[T0]] nofold
// CHECK: tensor.yield %[[CST]]
// CHECK: %[[T4:.*]] = tensor.pad %[[T1]] nofold
// CHECK: %[[T5:.*]] = linalg.matmul
// CHECK-SAME: ins(%[[T3]], %[[T4]] : tensor<4x7xf32>, tensor<7x5xf32>)
// CHECK-SAME: outs(%[[T2]] : tensor<4x5xf32>)
%4 = linalg.matmul ins(%1, %2 : tensor<4x?xf32>, tensor<?x5xf32>) outs(%3 : tensor<4x5xf32>) -> tensor<4x5xf32>
%5 = tensor.insert_slice %4 into %arg2[%iv0, %iv1] [4, 5] [1, 1] : tensor<4x5xf32> into tensor<24x25xf32>
func.return %5 : tensor<24x25xf32>
}
transform.sequence failures(propagate) {
^bb1(%arg1: !transform.any_op):
%0 = transform.structured.match ops{["linalg.matmul"]} in %arg1 : (!transform.any_op) -> !transform.any_op
%padded, %pad = transform.structured.pad %0 {
padding_values=[0.0 : f32, 0.0 : f32, 0.0 : f32],
padding_dimensions=[0, 1, 2],
pack_paddings=[1, 1, 0]
} : (!transform.any_op) -> (!transform.any_op, !transform.any_op)
}
// -----
func.func @pad(%arg0: tensor<24x12xf32>,
%arg1: tensor<12x25xf32>,
%arg2: tensor<24x25xf32>) -> tensor<24x25xf32> {
// expected-note @below {{when applied to this op}}
%0 = linalg.matmul ins(%arg0, %arg1 : tensor<24x12xf32>, tensor<12x25xf32>) outs(%arg2 : tensor<24x25xf32>) -> tensor<24x25xf32>
func.return %0 : tensor<24x25xf32>
}
transform.sequence failures(propagate) {
^bb1(%arg1: !transform.any_op):
%0 = transform.structured.match ops{["linalg.matmul"]} in %arg1 : (!transform.any_op) -> !transform.any_op
// expected-error @below {{op expects a padding value of type 'f32', got 0 : i32}}
%padded, %pad = transform.structured.pad %0 {
padding_values=[0: i32, 0.0 : f32, 0.0 : f32],
padding_dimensions=[0, 1, 2],
pack_paddings=[1, 1, 0]
} : (!transform.any_op) -> (!transform.any_op, !transform.any_op)
}
// -----
func.func @pad(%arg0: tensor<24x12xf32>,
%arg1: tensor<12x25xf32>,
%arg2: tensor<24x25xf32>) -> tensor<24x25xf32> {
// expected-note @below {{when applied to this op}}
%0 = linalg.matmul ins(%arg0, %arg1 : tensor<24x12xf32>, tensor<12x25xf32>) outs(%arg2 : tensor<24x25xf32>) -> tensor<24x25xf32>
func.return %0 : tensor<24x25xf32>
}
transform.sequence failures(propagate) {
^bb1(%arg1: !transform.any_op):
%0 = transform.structured.match ops{["linalg.matmul"]} in %arg1 : (!transform.any_op) -> !transform.any_op
// expected-error @below {{expects a padding that parses to 'f32', got "{foo}"}}
%padded, %pad = transform.structured.pad %0 {
padding_values=["{foo}", 0.0 : f32, 0.0 : f32],
padding_dimensions=[0, 1, 2],
pack_paddings=[1, 1, 0]
} : (!transform.any_op) -> (!transform.any_op, !transform.any_op)
}
// -----
// CHECK-LABEL: @pad(
func.func @pad(%arg0: tensor<24x12xf32>,
%arg1: tensor<12x25xf32>,
%arg2: tensor<24x25xf32>) -> tensor<24x25xf32> {
// This is attached to an error that is silenceable and is not reported by this transform
// {{when applied to this op}}
%0 = linalg.matmul ins(%arg0, %arg1 : tensor<24x12xf32>, tensor<12x25xf32>) outs(%arg2 : tensor<24x25xf32>) -> tensor<24x25xf32>
func.return %0 : tensor<24x25xf32>
}
transform.sequence failures(suppress) {
^bb1(%arg1: !transform.any_op):
%0 = transform.structured.match ops{["linalg.matmul"]} in %arg1 : (!transform.any_op) -> !transform.any_op
// This error is silenceable and is not reported by this transform
// {{transform.structured.pad failed to apply}}
%padded, %pad = transform.structured.pad %0 {
padding_values=[0.0 : f32, 0.0 : f32, 0.0 : f32],
padding_dimensions=[0, 1, 2],
pack_paddings=[1, 1, 0]
} : (!transform.any_op) -> (!transform.any_op, !transform.any_op)
}
// -----
// Check that the padding can be applied even when the output argument of the
// linalg op is not produced by an empty op or an extract_slice op.
// CHECK-DAG: #[[$MAP_MIN:.*]] = affine_map<(d0) -> (-d0 + 2044, 16)>
// CHECK-DAG: #[[$MAP_TO_16:.*]] = affine_map<(d0) -> (-d0 + 16)>
// CHECK-LABEL: @outs_not_produced_by_empty_or_extract_slice(
// CHECK-SAME: %[[A:[^: ]*]]: tensor<128x2044xf32>,
// CHECK-SAME: %[[B:[^: ]*]]: tensor<2044x128xf32>)
func.func @outs_not_produced_by_empty_or_extract_slice(%a : tensor<128x2044xf32>, %b : tensor<2044x128xf32>) -> tensor<128x128xf32> {
%cst = arith.constant 0.000000e+00 : f32
%0 = tensor.empty() : tensor<128x128xf32>
%9 = linalg.fill ins(%cst : f32) outs(%0 : tensor<128x128xf32>) -> tensor<128x128xf32>
%c0 = arith.constant 0 : index
%c16 = arith.constant 16 : index
%c2044 = arith.constant 2044 : index
// CHECK: scf.for %[[ARG3:.*]] = {{.*}} iter_args(%[[ARG4:.*]] = %{{.*}})
%10 = scf.for %arg3 = %c0 to %c2044 step %c16 iter_args(%arg4 = %9) -> (tensor<128x128xf32>) {
// CHECK: %[[MIN:.*]] = affine.min #[[$MAP_MIN]](%[[ARG3]])
%11 = affine.min affine_map<(d0) -> (-d0 + 2044, 16)>(%arg3)
// CHECK: %[[A_SLICE:.*]] = tensor.extract_slice %[[A]]
// CHECK: %[[B_SLICE:.*]] = tensor.extract_slice %[[B]]
%extracted_slice_2 = tensor.extract_slice %a[0, %arg3] [128, %11] [1, 1] : tensor<128x2044xf32> to tensor<128x?xf32>
%extracted_slice_3 = tensor.extract_slice %b[%arg3, 0] [%11, 128] [1, 1] : tensor<2044x128xf32> to tensor<?x128xf32>
// CHECK-DAG: %[[CST:.*]] = arith.constant 0.
// CHECK-DAG: %[[TO_16:.*]] = affine.apply #[[$MAP_TO_16]](%[[MIN]])
// CHECK: %[[PADDED_A_SLICE:.*]] = tensor.pad %[[A_SLICE]] nofold low[0, 0] high[0, %[[TO_16]]]
// CHECK: tensor.yield %[[CST]]
// CHECK: %[[PADDED_B_SLICE:.*]] = tensor.pad %[[B_SLICE]] nofold
// The output shape is already padded, so actually we shouldn't
// add anything to the upper bound.
// CHECK: %[[PADDED_ARG4:.*]] = tensor.pad %[[ARG4]] nofold low[{{.*}}] high[0, 0]
// CHECK: %[[T5:.*]] = linalg.matmul
// CHECK-SAME: ins(%[[PADDED_A_SLICE]], %[[PADDED_B_SLICE]] : tensor<128x16xf32>, tensor<16x128xf32>)
// CHECK-SAME: outs(%[[PADDED_ARG4]] : tensor<128x128xf32>)
%res = linalg.matmul ins(%extracted_slice_2, %extracted_slice_3 : tensor<128x?xf32>, tensor<?x128xf32>) outs(%arg4 : tensor<128x128xf32>) -> tensor<128x128xf32>
scf.yield %res : tensor<128x128xf32>
}
return %10 : tensor<128x128xf32>
}
transform.sequence failures(propagate) {
^bb1(%arg1: !transform.any_op):
%0 = transform.structured.match ops{["linalg.matmul"]} in %arg1 : (!transform.any_op) -> !transform.any_op
%padded, %pad = transform.structured.pad %0 {
padding_values=[0.0 : f32, 0.0 : f32, 0.0 : f32],
padding_dimensions=[0, 1, 2],
pack_paddings=[1, 1, 1]
} : (!transform.any_op) -> (!transform.any_op, !transform.any_op)
}
// -----
#map = affine_map<()[s0] -> (-s0 + 12, 7)>
// CHECK-LABEL: @pack_everything
func.func @pack_everything(%arg0: tensor<24x12xf32>,
%arg1: tensor<12x25xf32>,
%arg2: tensor<24x25xf32>,
%iv0 : index, %iv1 : index, %iv2 : index) -> tensor<24x25xf32> {
%0 = affine.min #map()[%iv2]
// CHECK: %[[T0:.*]] = tensor.extract_slice %
// CHECK: %[[T1:.*]] = tensor.extract_slice %
// CHECK: %[[T2:.*]] = tensor.extract_slice %
%1 = tensor.extract_slice %arg0[%iv0, %iv2] [4, %0] [1, 1] : tensor<24x12xf32> to tensor<4x?xf32>
%2 = tensor.extract_slice %arg1[%iv2, %iv1] [%0, 5] [1, 1] : tensor<12x25xf32> to tensor<?x5xf32>
%3 = tensor.extract_slice %arg2[%iv0, %iv1] [4, 5] [1, 1] : tensor<24x25xf32> to tensor<4x5xf32>
// CHECK-DAG: %[[CST:.*]] = arith.constant 0.
// CHECK: %[[PAD0:.*]] = tensor.pad %[[T0]] nofold
// CHECK: %[[PAD1:.*]] = tensor.pad %[[T1]] nofold
// CHECK: %[[PAD2:.*]] = tensor.pad %[[T2]] nofold
// CHECK: %[[T5:.*]] = linalg.matmul
// CHECK-SAME: ins(%[[PAD0]], %[[PAD1]] : tensor<4x7xf32>, tensor<7x5xf32>)
// CHECK-SAME: outs(%[[PAD2]] : tensor<4x5xf32>)
// Get unpadded result (no-op in this example).
// CHECK: %[[T6:.*]] = tensor.extract_slice %[[T5]]
// Copy back result to the original buffer, so that the destination of the
// computation does not change.
// CHECK: %[[T7:.*]] = bufferization.copy_tensor %[[T6]], %[[T2]]
%4 = linalg.matmul ins(%1, %2 : tensor<4x?xf32>, tensor<?x5xf32>) outs(%3 : tensor<4x5xf32>) -> tensor<4x5xf32>
// CHECK: %[[T8:.*]] = tensor.insert_slice %[[T7]] into %{{.*}}
%5 = tensor.insert_slice %4 into %arg2[%iv0, %iv1] [4, 5] [1, 1] : tensor<4x5xf32> into tensor<24x25xf32>
func.return %5 : tensor<24x25xf32>
}
transform.sequence failures(propagate) {
^bb1(%arg1: !transform.any_op):
%0 = transform.structured.match ops{["linalg.matmul"]} in %arg1 : (!transform.any_op) -> !transform.any_op
%padded, %pad = transform.structured.pad %0 {
padding_values=[0.0 : f32, 0.0 : f32, 0.0 : f32],
padding_dimensions=[0, 1, 2],
pack_paddings=[1, 1, 1]
} : (!transform.any_op) -> (!transform.any_op, !transform.any_op)
}
|