File: transform-op-split-reduction-by-scaling.mlir

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (27 lines) | stat: -rw-r--r-- 1,446 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
// RUN: mlir-opt --test-transform-dialect-interpreter %s | FileCheck %s

// CHECK-LABEL: func.func @matmul_split
func.func @matmul_split(%A : tensor<?x256xf32>, %B: tensor<256x32xf32>, %C: tensor<?x32xf32>) -> tensor<?x32xf32> {

  //      CHECK: bufferization.alloc_tensor({{.*}}) : tensor<?x32x64xf32>
  //      CHECK: linalg.generic
  // CHECK-SAME: iterator_types = ["parallel", "parallel", "parallel", "reduction"]
  // CHECK-SAME: ins(%{{[a-zA-Z0-9]*}}, %{{[a-zA-Z0-9]*}}, %{{[a-zA-Z0-9]*}} : tensor<?x256xf32>, tensor<256x32xf32>, tensor<64x4xi1>)
  // CHECK-SAME: outs(%{{[a-zA-Z0-9]*}} : tensor<?x32x64xf32>) {

  //      CHECK: linalg.generic
  // CHECK-SAME: iterator_types = ["parallel", "parallel", "reduction"]
  // CHECK-SAME: ins(%{{[a-zA-Z0-9]*}} : tensor<?x32x64xf32>)
  // CHECK-SAME: outs(%{{[a-zA-Z0-9]*}} : tensor<?x32xf32>) {
  %0 = linalg.matmul ins(%A, %B: tensor<?x256xf32>, tensor<256x32xf32>)
                    outs(%C: tensor<?x32xf32>) -> tensor<?x32xf32>
  return %0: tensor<?x32xf32>
}

transform.sequence failures(propagate) {
^bb1(%arg1: !transform.any_op):
  %0 = transform.structured.match ops{["linalg.matmul"]} in %arg1 : (!transform.any_op) -> !transform.any_op
  %1:4 = transform.structured.split_reduction %0
    { split_factor = 4, insert_split_dimension = 2, use_scaling_algorithm, use_alloc}
    : (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op, !transform.any_op)
}