1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
|
// RUN: mlir-opt --split-input-file --test-transform-dialect-interpreter %s | FileCheck %s
func.func @matmul_split(%A : tensor<16x256xf32>, %B: tensor<256x32xf32>, %C: tensor<16x32xf32>) -> tensor<16x32xf32> {
%0 = linalg.matmul ins(%A, %B: tensor<16x256xf32>, tensor<256x32xf32>)
outs(%C: tensor<16x32xf32>) -> tensor<16x32xf32>
return %0: tensor<16x32xf32>
}
// CHECK-DAG: #[[$MAP0:.*]] = affine_map<(d0, d1, d2, d3) -> (d0, d2, d3)>
// CHECK-DAG: #[[$MAP1:.*]] = affine_map<(d0, d1, d2, d3) -> (d2, d3, d1)>
// CHECK-DAG: #[[$MAP2:.*]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2)>
// CHECK-DAG: #[[$MAP3:.*]] = affine_map<(d0, d1, d2) -> (d0, d1, d2)>
// CHECK-DAG: #[[$MAP4:.*]] = affine_map<(d0, d1, d2) -> (d0, d1)>
// CHECK-LABEL: @matmul_split
// CHECK-DAG: %[[ID:.*]] = arith.constant 0.000000e+00 : f32
// CHECK-DAG: %[[I1:.*]] = tensor.expand_shape %{{.*}}[0], [1, 2]] : tensor<16x256xf32> into tensor<16x4x64xf32>
// CHECK-DAG: %[[I2:.*]] = tensor.expand_shape %{{.*}}[0, 1], [2]] : tensor<256x32xf32> into tensor<4x64x32xf32>
// CHECK-DAG: %[[INI:.*]] = tensor.empty() : tensor<16x32x4xf32>
// CHECK: %[[F:.*]] = linalg.fill ins(%[[ID]] : f32) outs(%[[INI]] : tensor<16x32x4xf32>) -> tensor<16x32x4xf32>
// CHECK: %[[G:.*]] = linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP1]], #[[$MAP2]]]
// CHECK-SAME: , iterator_types = ["parallel", "parallel", "parallel", "reduction"]}
// CHECK-SAME: ins(%[[I1]], %[[I2]] : tensor<16x4x64xf32>, tensor<4x64x32xf32>) outs(%[[F]] : tensor<16x32x4xf32>) {
// CHECK: arith.mulf
// CHECK: arith.addf
// CHECK: linalg.yield
// CHECK: } -> tensor<16x32x4xf32>
// CHECK: %[[R:.*]] = linalg.generic {indexing_maps = [#[[$MAP3]], #[[$MAP4]]],
// CHECK-SAME: iterator_types = ["parallel", "parallel", "reduction"]} ins(%[[G]] : tensor<16x32x4xf32>) outs(%{{.*}} : tensor<16x32xf32>) {
// CHECK: arith.addf
// CHECK: linalg.yield %{{.*}} : f32
// CHECK: } -> tensor<16x32xf32>
// CHECK: return %[[R]] : tensor<16x32xf32>
transform.sequence failures(propagate) {
^bb1(%arg1: !transform.any_op):
%0 = transform.structured.match ops{["linalg.matmul"]} in %arg1 : (!transform.any_op) -> !transform.any_op
%1:4 = transform.structured.split_reduction %0 { split_factor = 4, insert_split_dimension = 2}
: (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op, !transform.any_op)
}
// -----
func.func @generic_split_1d(%arg0: tensor<32xf32>, %arg1: tensor<f32>, %out: tensor<f32>) -> tensor<f32> {
%red = linalg.generic {indexing_maps = [affine_map<(d0) -> (d0)>,
affine_map<(d0) -> ()>,
affine_map<(d0) -> ()>],
iterator_types = ["reduction"]}
ins(%arg0, %arg1 : tensor<32xf32>, tensor<f32>)
outs(%out : tensor<f32>) {
^bb0(%arg7: f32, %arg8: f32, %arg9: f32):
%40 = arith.subf %arg7, %arg8 : f32
%41 = math.exp %40 : f32
%42 = arith.mulf %41, %arg9 : f32
linalg.yield %42 : f32
} -> tensor<f32>
return %red : tensor<f32>
}
// CHECK-DAG: #[[$MAP0:.*]] = affine_map<(d0, d1) -> (d0, d1)>
// CHECK-DAG: #[[$MAP1:.*]] = affine_map<(d0, d1) -> ()>
// CHECK-DAG: #[[$MAP2:.*]] = affine_map<(d0, d1) -> (d0)>
// CHECK-DAG: #[[$MAP3:.*]] = affine_map<(d0) -> (d0)>
// CHECK-DAG: #[[$MAP4:.*]] = affine_map<(d0) -> ()>
//CHECK-LABEL: @generic_split_1d
// CHECK-DAG: %[[ID:.*]] = arith.constant 1.000000e+00 : f32
// CHECK-DAG: %[[I1:.*]] = tensor.expand_shape %{{.*}}[0, 1]] : tensor<32xf32> into tensor<4x8xf32>
// CHECK-DAG: %[[INI:.*]] = tensor.empty() : tensor<4xf32>
// CHECK: %[[F:.*]] = linalg.fill ins(%[[ID]] : f32) outs(%[[INI]] : tensor<4xf32>) -> tensor<4xf32>
// CHECK: %[[G:.*]] = linalg.generic
// CHECK: {indexing_maps = [#[[$MAP0]], #[[$MAP1]], #[[$MAP2]]],
// CHECK: iterator_types = ["parallel", "reduction"]} ins(%[[I1]], %{{.*}} : tensor<4x8xf32>, tensor<f32>) outs(%[[F]] : tensor<4xf32>) {
// CHECK: arith.subf
// CHECK: math.exp
// CHECK: arith.mulf
// CHECK: linalg.yield
// CHECK: } -> tensor<4xf32>
// CHECK: %[[R:.*]] = linalg.generic {indexing_maps = [#[[$MAP3]], #[[$MAP4]]], iterator_types = ["reduction"]} ins(%[[G]] : tensor<4xf32>) outs(%{{.*}} : tensor<f32>) {
// CHECK: arith.mulf
// CHECK: linalg.yield
// CHECK: } -> tensor<f32>
// CHECK: return %[[R]] : tensor<f32>
transform.sequence failures(propagate) {
^bb1(%arg1: !transform.any_op):
%0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op
%1:4 = transform.structured.split_reduction %0 { split_factor = 4, insert_split_dimension = 0}
: (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op, !transform.any_op)
}
// -----
func.func @generic_split_3d(%input: tensor<32x2xf32>, %input_2: tensor<5x32xf32>, %output: tensor<5x2xf32>)
-> tensor<5x2xf32>
{
%0 = linalg.generic {
indexing_maps = [
affine_map<(d0, d1, d2) -> (d1, d0)>,
affine_map<(d0, d1, d2) -> (d2, d1)>,
affine_map<(d0, d1, d2) -> (d2, d0)>
],
iterator_types = ["parallel", "reduction", "parallel"]
} ins(%input, %input_2 : tensor<32x2xf32>, tensor<5x32xf32>) outs(%output : tensor<5x2xf32>) {
^bb0(%arg0: f32, %arg1: f32, %arg2: f32):
%3 = arith.addf %arg0, %arg1 : f32
%4 = arith.maxf %3, %arg2 : f32
linalg.yield %4 : f32
} -> tensor<5x2xf32>
return %0 : tensor<5x2xf32>
}
// CHECK-DAG: #[[$MAP0:.*]] = affine_map<(d0, d1, d2, d3) -> (d2, d1, d0)>
// CHECK-DAG: #[[$MAP1:.*]] = affine_map<(d0, d1, d2, d3) -> (d3, d2, d1)>
// CHECK-DAG: #[[$MAP2:.*]] = affine_map<(d0, d1, d2, d3) -> (d3, d0, d2)>
// CHECK-DAG: #[[$MAP3:.*]] = affine_map<(d0, d1, d2) -> (d0, d1, d2)>
// CHECK-DAG: #[[$MAP4:.*]] = affine_map<(d0, d1, d2) -> (d0, d1)>
// CHECK-LABEL: func @generic_split_3d
// CHECK-DAG: %[[ID:.*]] = arith.constant 0xFF800000 : f32
// CHECK-DAG: %[[I1:.*]] = tensor.expand_shape %{{.*}}[0, 1], [2]] : tensor<32x2xf32> into tensor<4x8x2xf32>
// CHECK-DAG: %[[I2:.*]] = tensor.expand_shape %{{.*}}[0], [1, 2]] : tensor<5x32xf32> into tensor<5x4x8xf32>
// CHECK-DAG: %[[INI:.*]] = tensor.empty() : tensor<5x2x4xf32>
// CHECK: %[[F:.*]] = linalg.fill ins(%[[ID]] : f32) outs(%[[INI]] : tensor<5x2x4xf32>) -> tensor<5x2x4xf32>
// CHECK: %[[G:.*]] = linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP1]], #[[$MAP2]]], iterator_types = ["parallel", "reduction", "parallel", "parallel"]}
// CHECK-SAME: ins(%[[I1]], %[[I2]] : tensor<4x8x2xf32>, tensor<5x4x8xf32>) outs(%[[F]] : tensor<5x2x4xf32>) {
// CHECK: arith.addf
// CHECK: arith.maxf
// CHECK: linalg.yield
// CHECK: } -> tensor<5x2x4xf32>
// CHECK: %[[R:.*]] = linalg.generic {indexing_maps = [#[[$MAP3]], #[[$MAP4]]], iterator_types = ["parallel", "parallel", "reduction"]}
// CHECK-SAME: ins(%[[G]] : tensor<5x2x4xf32>) outs(%{{.*}} : tensor<5x2xf32>) {
// CHECK: arith.maxf
// CHECK: linalg.yield
// CHECK: } -> tensor<5x2xf32>
// CHECK: return %[[R]] : tensor<5x2xf32>
transform.sequence failures(propagate) {
^bb1(%arg1: !transform.any_op):
%0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op
%1:4 = transform.structured.split_reduction %0 { split_factor = 4, insert_split_dimension = 2}
: (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op, !transform.any_op)
}
// -----
func.func @matmul_split(%A : tensor<16x256xf32>, %B: tensor<256x32xf32>, %C: tensor<16x32xf32>) -> tensor<16x32xf32> {
%0 = linalg.matmul ins(%A, %B: tensor<16x256xf32>, tensor<256x32xf32>)
outs(%C: tensor<16x32xf32>) -> tensor<16x32xf32>
return %0: tensor<16x32xf32>
}
// CHECK-DAG: #[[$MAP0:.*]] = affine_map<(d0, d1, d2, d3) -> (d0, d2, d3)>
// CHECK-DAG: #[[$MAP1:.*]] = affine_map<(d0, d1, d2, d3) -> (d2, d3, d1)>
// CHECK-DAG: #[[$MAP2:.*]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d3)>
// CHECK-DAG: #[[$MAP3:.*]] = affine_map<(d0, d1, d2) -> (d0, d1, d2)>
// CHECK-DAG: #[[$MAP4:.*]] = affine_map<(d0, d1, d2) -> (d0, d1)>
// CHECK-LABEL: @matmul_split
// CHECK-DAG: %[[ID:.*]] = arith.constant 0.000000e+00 : f32
// CHECK-DAG: %[[I1:.*]] = tensor.expand_shape %{{.*}}[0], [1, 2]] : tensor<16x256xf32> into tensor<16x64x4xf32>
// CHECK-DAG: %[[I2:.*]] = tensor.expand_shape %{{.*}}[0, 1], [2]] : tensor<256x32xf32> into tensor<64x4x32xf32>
// CHECK-DAG: %[[INI:.*]] = tensor.empty() : tensor<16x32x4xf32>
// CHECK: %[[F:.*]] = linalg.fill ins(%[[ID]] : f32) outs(%[[INI]] : tensor<16x32x4xf32>) -> tensor<16x32x4xf32>
// CHECK: %[[G:.*]] = linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP1]], #[[$MAP2]]]
// CHECK-SAME: , iterator_types = ["parallel", "parallel", "reduction", "parallel"]}
// CHECK-SAME: ins(%[[I1]], %[[I2]] : tensor<16x64x4xf32>, tensor<64x4x32xf32>) outs(%[[F]] : tensor<16x32x4xf32>) {
// CHECK: arith.mulf
// CHECK: arith.addf
// CHECK: linalg.yield
// CHECK: } -> tensor<16x32x4xf32>
// CHECK: %[[R:.*]] = linalg.generic {indexing_maps = [#[[$MAP3]], #[[$MAP4]]],
// CHECK-SAME: iterator_types = ["parallel", "parallel", "reduction"]} ins(%[[G]] : tensor<16x32x4xf32>) outs(%{{.*}} : tensor<16x32xf32>) {
// CHECK: arith.addf
// CHECK: linalg.yield %{{.*}} : f32
// CHECK: } -> tensor<16x32xf32>
// CHECK: return %[[R]] : tensor<16x32xf32>
transform.sequence failures(propagate) {
^bb1(%arg1: !transform.any_op):
%0 = transform.structured.match ops{["linalg.matmul"]} in %arg1 : (!transform.any_op) -> !transform.any_op
%1:4 = transform.structured.split_reduction %0 { split_factor = 4, insert_split_dimension = 2, inner_parallel}
: (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op, !transform.any_op)
}
// -----
func.func @generic_split_1d(%arg0: tensor<32xf32>, %arg1: tensor<f32>, %out: tensor<f32>) -> tensor<f32> {
%red = linalg.generic {indexing_maps = [affine_map<(d0) -> (d0)>,
affine_map<(d0) -> ()>,
affine_map<(d0) -> ()>],
iterator_types = ["reduction"]}
ins(%arg0, %arg1 : tensor<32xf32>, tensor<f32>)
outs(%out : tensor<f32>) {
^bb0(%arg7: f32, %arg8: f32, %arg9: f32):
%40 = arith.subf %arg7, %arg8 : f32
%41 = math.exp %40 : f32
%42 = arith.mulf %41, %arg9 : f32
linalg.yield %42 : f32
} -> tensor<f32>
return %red : tensor<f32>
}
// CHECK-DAG: #[[$MAP0:.*]] = affine_map<(d0, d1) -> (d0, d1)>
// CHECK-DAG: #[[$MAP1:.*]] = affine_map<(d0, d1) -> ()>
// CHECK-DAG: #[[$MAP2:.*]] = affine_map<(d0, d1) -> (d1)>
// CHECK-DAG: #[[$MAP3:.*]] = affine_map<(d0) -> (d0)>
// CHECK-DAG: #[[$MAP4:.*]] = affine_map<(d0) -> ()>
//CHECK-LABEL: @generic_split_1d
// CHECK-DAG: %[[ID:.*]] = arith.constant 1.000000e+00 : f32
// CHECK-DAG: %[[I1:.*]] = tensor.expand_shape %{{.*}}[0, 1]] : tensor<32xf32> into tensor<8x4xf32>
// CHECK-DAG: %[[INI:.*]] = tensor.empty() : tensor<4xf32>
// CHECK: %[[F:.*]] = linalg.fill ins(%[[ID]] : f32) outs(%[[INI]] : tensor<4xf32>) -> tensor<4xf32>
// CHECK: %[[G:.*]] = linalg.generic
// CHECK: {indexing_maps = [#[[$MAP0]], #[[$MAP1]], #[[$MAP2]]],
// CHECK: iterator_types = ["reduction", "parallel"]} ins(%[[I1]], %{{.*}} : tensor<8x4xf32>, tensor<f32>) outs(%[[F]] : tensor<4xf32>) {
// CHECK: arith.subf
// CHECK: math.exp
// CHECK: arith.mulf
// CHECK: linalg.yield
// CHECK: } -> tensor<4xf32>
// CHECK: %[[R:.*]] = linalg.generic {indexing_maps = [#[[$MAP3]], #[[$MAP4]]], iterator_types = ["reduction"]} ins(%[[G]] : tensor<4xf32>) outs(%{{.*}} : tensor<f32>) {
// CHECK: arith.mulf
// CHECK: linalg.yield
// CHECK: } -> tensor<f32>
// CHECK: return %[[R]] : tensor<f32>
transform.sequence failures(propagate) {
^bb1(%arg1: !transform.any_op):
%0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op
%1:4 = transform.structured.split_reduction %0 { split_factor = 4, insert_split_dimension = 0, inner_parallel}
: (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op, !transform.any_op)
}
// -----
func.func @generic_split_3d(%input: tensor<32x2xf32>, %input_2: tensor<5x32xf32>, %output: tensor<5x2xf32>)
-> tensor<5x2xf32>
{
%0 = linalg.generic {
indexing_maps = [
affine_map<(d0, d1, d2) -> (d1, d0)>,
affine_map<(d0, d1, d2) -> (d2, d1)>,
affine_map<(d0, d1, d2) -> (d2, d0)>
],
iterator_types = ["parallel", "reduction", "parallel"]
} ins(%input, %input_2 : tensor<32x2xf32>, tensor<5x32xf32>) outs(%output : tensor<5x2xf32>) {
^bb0(%arg0: f32, %arg1: f32, %arg2: f32):
%3 = arith.addf %arg0, %arg1 : f32
%4 = arith.minf %3, %arg2 : f32
linalg.yield %4 : f32
} -> tensor<5x2xf32>
return %0 : tensor<5x2xf32>
}
// CHECK-DAG: #[[$MAP0:.*]] = affine_map<(d0, d1, d2, d3) -> (d1, d2, d0)>
// CHECK-DAG: #[[$MAP1:.*]] = affine_map<(d0, d1, d2, d3) -> (d3, d1, d2)>
// CHECK-DAG: #[[$MAP2:.*]] = affine_map<(d0, d1, d2, d3) -> (d3, d0, d2)>
// CHECK-DAG: #[[$MAP3:.*]] = affine_map<(d0, d1, d2) -> (d0, d1, d2)>
// CHECK-DAG: #[[$MAP4:.*]] = affine_map<(d0, d1, d2) -> (d0, d1)>
// CHECK-LABEL: func @generic_split_3d
// CHECK-DAG: %[[ID:.*]] = arith.constant 0x7F800000 : f32
// CHECK-DAG: %[[I1:.*]] = tensor.expand_shape %{{.*}}[0, 1], [2]] : tensor<32x2xf32> into tensor<8x4x2xf32>
// CHECK-DAG: %[[I2:.*]] = tensor.expand_shape %{{.*}}[0], [1, 2]] : tensor<5x32xf32> into tensor<5x8x4xf32>
// CHECK-DAG: %[[INI:.*]] = tensor.empty() : tensor<5x2x4xf32>
// CHECK: %[[F:.*]] = linalg.fill ins(%[[ID]] : f32) outs(%[[INI]] : tensor<5x2x4xf32>) -> tensor<5x2x4xf32>
// CHECK: %[[G:.*]] = linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP1]], #[[$MAP2]]], iterator_types = ["parallel", "reduction", "parallel", "parallel"]}
// CHECK-SAME: ins(%[[I1]], %[[I2]] : tensor<8x4x2xf32>, tensor<5x8x4xf32>) outs(%[[F]] : tensor<5x2x4xf32>) {
// CHECK: arith.addf
// CHECK: arith.minf
// CHECK: linalg.yield
// CHECK: } -> tensor<5x2x4xf32>
// CHECK: %[[R:.*]] = linalg.generic {indexing_maps = [#[[$MAP3]], #[[$MAP4]]], iterator_types = ["parallel", "parallel", "reduction"]}
// CHECK-SAME: ins(%[[G]] : tensor<5x2x4xf32>) outs(%{{.*}} : tensor<5x2xf32>) {
// CHECK: arith.minf
// CHECK: linalg.yield
// CHECK: } -> tensor<5x2xf32>
// CHECK: return %[[R]] : tensor<5x2xf32>
transform.sequence failures(propagate) {
^bb1(%arg1: !transform.any_op):
%0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op
%1:4 = transform.structured.split_reduction %0 { split_factor = 4, insert_split_dimension = 2, inner_parallel}
: (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op, !transform.any_op)
}
|