1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
|
// RUN: mlir-opt %s --test-transform-dialect-interpreter --split-input-file -verify-diagnostics | FileCheck %s
transform.sequence failures(propagate) {
^bb1(%arg1: !transform.any_op):
%0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op
%1:2 = transform.structured.split %0 after 42 { dimension = 0 } : !transform.any_op
}
func.func private @elem(%arg0: f32, %arg1: index, %arg2: index) -> f32
// CHECK: #[[$ADD_42_MAP:.+]] = affine_map<(d0) -> (d0 + 42)>
// CHECK-LABEL: @one_d_static
// CHECK-SAME: %[[IN:.+]]: tensor<100xf32>, %[[OUT:.+]]: tensor<100xf32>
func.func @one_d_static(%arg0: tensor<100xf32>, %arg1: tensor<100xf32>) -> tensor<100xf32> {
// CHECK: %[[IN_SLICE_LOW:.+]] = tensor.extract_slice %[[IN]][0] [42] [1] : tensor<100xf32> to tensor<42xf32>
// CHECK: %[[OUT_SLICE_LOW:.+]] = tensor.extract_slice %[[OUT]][0] [42] [1] : tensor<100xf32> to tensor<42xf32>
// CHECK: %[[RES_SLICE_LOW:.+]] = linalg.generic
// CHECK: ins(%[[IN_SLICE_LOW]]
// CHECK: outs(%[[OUT_SLICE_LOW]]
// CHECK: linalg.index 0
// CHECK: func.call @elem
// CHECK: %[[RES_PARTIAL:.+]] = tensor.insert_slice %[[RES_SLICE_LOW]] into %[[OUT]][0] [42] [1]
//
// CHECK: %[[IN_SLICE_HIGH:.+]] = tensor.extract_slice %[[IN]][42] [58] [1] : tensor<100xf32> to tensor<58xf32>
// CHECK: %[[OUT_SLICE_HIGH:.+]] = tensor.extract_slice %[[RES_PARTIAL]][42] [58] [1] : tensor<100xf32> to tensor<58xf32>
// CHECK: %[[RES_SLICE_HIGH:.+]] = linalg.generic
// CHECK: ins(%[[IN_SLICE_HIGH]]
// CHECK: outs(%[[OUT_SLICE_HIGH]]
// CHECK: %[[IDX:.+]] = linalg.index 0
// CHECK: affine.apply #[[$ADD_42_MAP]](%[[IDX]])
// CHECK: func.call @elem
// CHECK: %[[RES:.+]] = tensor.insert_slice %[[RES_SLICE_HIGH]] into %[[RES_PARTIAL]][42] [58] [1]
%0 = linalg.generic {
indexing_maps = [affine_map<(i) -> (i)>, affine_map<(i) -> (i)>],
iterator_types = ["parallel"]
}
ins(%arg0: tensor<100xf32>) outs(%arg1: tensor<100xf32>) {
^bb0(%0: f32, %1: f32):
%i = linalg.index 0 : index
%call_res = func.call @elem(%0, %i, %i) : (f32, index, index) -> f32
linalg.yield %call_res : f32
} -> tensor<100xf32>
// CHECK: return %[[RES]]
return %0 : tensor<100xf32>
}
// -----
transform.sequence failures(propagate) {
^bb1(%arg1: !transform.any_op):
%0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op
%1:2 = transform.structured.split %0 after 42 { dimension = 0 } : !transform.any_op
}
func.func private @elem(%arg0: f32, %arg1: index, %arg2: index) -> f32
// CHECK-LABEL: @one_d_static_overflow
// CHECK-SAME: %[[IN:.+]]: tensor<10xf32>, %[[OUT:.+]]: tensor<10xf32>
func.func @one_d_static_overflow(%arg0: tensor<10xf32>, %arg1: tensor<10xf32>) -> tensor<10xf32> {
// Folding is sufficiently powerful to detect the static overflow and avoid
// the splitting altogether.
// CHECK: %[[RES_SLICE_LOW:.+]] = linalg.generic
// CHECK: ins(%[[IN]]
// CHECK: outs(%[[OUT]]
// CHECK: linalg.index 0
// CHECK: func.call @elem
%0 = linalg.generic {
indexing_maps = [affine_map<(i) -> (i)>, affine_map<(i) -> (i)>],
iterator_types = ["parallel"]
}
ins(%arg0: tensor<10xf32>) outs(%arg1: tensor<10xf32>) {
^bb0(%0: f32, %1: f32):
%i = linalg.index 0 : index
%call_res = func.call @elem(%0, %i, %i) : (f32, index, index) -> f32
linalg.yield %call_res : f32
} -> tensor<10xf32>
return %0 : tensor<10xf32>
}
// -----
transform.sequence failures(propagate) {
^bb1(%arg1: !transform.any_op):
%0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op
%1 = transform.structured.match ops{["func.call"]} in %arg1 : (!transform.any_op) -> !transform.any_op
transform.structured.split %0 after %1 { dimension = 0 } : !transform.any_op, !transform.any_op
}
func.func private @get_size() -> index
// CHECK: #[[$MAP_MIN_100:.+]] = affine_map<()[s0] -> (s0, 100)>
// CHECK: #[[$MAP_S_MINUS_100:.+]] = affine_map<()[s0] -> (-s0 + 100)>
// CHECK-LABEL: @dynamic
func.func @dynamic(%arg0: tensor<100xf32>, %arg1: tensor<100xf32>) -> tensor<100xf32> {
// CHECK: %[[SPLIT:.+]] = call @get_size
// CHECK: %[[SPLIT_LOW:.+]] = affine.min #[[$MAP_MIN_100]]()[%[[SPLIT]]
// CHECK: %[[SPLIT_HIGH_1:.+]] = affine.apply #[[$MAP_S_MINUS_100]]()[%[[SPLIT_LOW]]]
// CHECK: %[[IN_SLICE_LOW:.+]] = tensor.extract_slice %[[IN:.+]][0] [%[[SPLIT_LOW]]] [1] : tensor<100xf32> to tensor<?xf32>
// CHECK: %[[OUT_SLICE_LOW:.+]] = tensor.extract_slice %[[OUT:.+]][0] [%[[SPLIT_LOW]]] [1] : tensor<100xf32> to tensor<?xf32>
// CHECK: %[[RES_SLICE_LOW:.+]] = linalg.generic
// CHECK: ins(%[[IN_SLICE_LOW]]
// CHECK: outs(%[[OUT_SLICE_LOW]]
// CHECK: %[[PARTIAL:.+]] = tensor.insert_slice %[[RES_SLICE_LOW]] into %[[OUT]][0] [%[[SPLIT_LOW]]] [1]
//
// CHECK: %[[SPLIT_HIGH_2:.+]] = affine.apply #[[$MAP_S_MINUS_100]]()[%[[SPLIT_LOW]]]
// CHECK: %[[SPLIT_HIGH_3:.+]] = affine.apply #[[$MAP_S_MINUS_100]]()[%[[SPLIT_LOW]]]
// CHECK: %[[IN_SLICE_HIGH:.+]] = tensor.extract_slice %[[IN:.+]][%[[SPLIT_LOW]]] [%[[SPLIT_HIGH_2]]] [1] : tensor<100xf32> to tensor<?xf32>
// CHECK: %[[OUT_SLICE_HIGH:.+]] = tensor.extract_slice %[[PARTIAL:.+]][%[[SPLIT_LOW]]] [%[[SPLIT_HIGH_3]]] [1] : tensor<100xf32> to tensor<?xf32>
// CHECK: %[[RES_SLICE_HIGH:.+]] = linalg.generic
// CHECK: ins(%[[IN_SLICE_HIGH]]
// CHECK: outs(%[[OUT_SLICE_HIGH]]
// CHECK: %[[SPLIT_HIGH_4:.+]] = affine.apply #[[$MAP_S_MINUS_100]]()[%[[SPLIT_LOW]]]
// CHECK: tensor.insert_slice %[[RES_SLICE_HIGH]] into %[[PARTIAL]][%[[SPLIT_LOW]]] [%[[SPLIT_HIGH_4]]] [1]
%0 = func.call @get_size() : () -> index
%1 = linalg.generic {
indexing_maps = [affine_map<(i) -> (i)>, affine_map<(i) -> (i)>],
iterator_types = ["parallel"]
}
ins(%arg0: tensor<100xf32>) outs(%arg1: tensor<100xf32>) {
^bb0(%3: f32, %4: f32):
%5 = arith.addf %3, %4 : f32
linalg.yield %5 : f32
} -> tensor<100xf32>
return %1 : tensor<100xf32>
}
// -----
transform.sequence failures(propagate) {
^bb1(%arg1: !transform.any_op):
%0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op
%1:2 = transform.structured.split %0 after 4 { dimension = 0 } : !transform.any_op
%2:2 = transform.structured.split %1#1 after 16 { dimension = 1 } : !transform.any_op
}
func.func private @elem(%arg0: f32, %arg1: index, %arg2: index) -> f32
// CHECK-LABEL: @two_d
func.func @two_d(%arg0: tensor<10x34xf32>,
%arg1: tensor<10x34xf32>) -> tensor<10x34xf32> {
// Check the overall structure: split along the dimension 0, and then split
// the second half only along the dimension 1.
// CHECK: %[[IN_1:.+]] = tensor.extract_slice %[[IN:.+]][0, 0]
// CHECK: %[[OUT_1:.+]] = tensor.extract_slice %[[OUT:.+]][0, 0]
// CHECK: %[[RES_1:.+]] = linalg.generic
// CHECK-SAME: ins(%[[IN_1]] : tensor<4x34xf32>)
// CHECK-SAME: outs(%[[OUT_1]] : tensor<4x34xf32>)
// CHECK: %[[PARTIAL_1:.+]] = tensor.insert_slice %[[RES_1]] into %[[OUT]]
//
// CHECK: %[[IN_2:.+]] = tensor.extract_slice %[[IN]]
// CHECK: %[[OUT_2:.+]] = tensor.extract_slice %[[PARTIAL_1]]
// Note that `extract_slice` taking a slice from another `extract_slice` result
// is folded to use the operand of the first `extract_slice`.
// CHECK: %[[IN_21:.+]] = tensor.extract_slice %[[IN_2]]
// CHECK: %[[OUT_21:.+]] = tensor.extract_slice %[[OUT_2]]
// CHECK: %[[RES_21:.+]] = linalg.generic
// CHECK-SAME: ins(%[[IN_21]] : tensor<6x16xf32>)
// CHECK-SAME: outs(%[[OUT_21]] : tensor<6x16xf32>)
// CHECK: %[[PARTIAL_21:.+]] = tensor.insert_slice %[[RES_21]] into %[[OUT_2]]
//
// CHECK: %[[IN_22:.+]] = tensor.extract_slice %[[IN_2]]
// CHECK: %[[OUT_22:.+]] = tensor.extract_slice %[[PARTIAL_21]]
// CHECK: %[[RES_22:.+]] = linalg.generic
// CHECK-SAME: ins(%[[IN_22]] : tensor<6x18xf32>)
// CHECK-SAME: outs(%[[OUT_22]] : tensor<6x18xf32>)
// CHECK: %[[PARTIAL_22:.+]] = tensor.insert_slice %[[RES_22]] into %[[PARTIAL_21]]
// CHECK: %[[PARTIAL_2:.+]] = tensor.insert_slice %[[PARTIAL_22]] into %[[PARTIAL_1]]
%0 = linalg.generic {
indexing_maps = [affine_map<(i, j) -> (i, j)>,
affine_map<(i, j) -> (i, j)>],
iterator_types = ["parallel", "parallel"]
}
ins(%arg0: tensor<10x34xf32>)
outs(%arg1: tensor<10x34xf32>) {
^bb0(%0: f32, %1: f32):
%i = linalg.index 0 : index
%j = linalg.index 1 : index
%call_res = func.call @elem(%0, %i, %j) : (f32, index, index) -> f32
linalg.yield %call_res : f32
} -> tensor<10x34xf32>
return %0 : tensor<10x34xf32>
}
// -----
transform.sequence failures(propagate) {
^bb1(%arg1: !transform.any_op):
// expected-error @below {{expects either a dynamic or a static split point to be provided}}
%0:2 = "transform.structured.split"(%arg1) { dimension = 1, static_split_point = -9223372036854775808 } : (!transform.any_op) -> (!transform.any_op, !transform.any_op)
}
// -----
transform.sequence failures(propagate) {
^bb1(%arg1: !transform.any_op):
%0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op
%1 = transform.structured.match ops{["func.call"]} in %arg1 : (!transform.any_op) -> !transform.any_op
// expected-error @below {{expected dynamic split point handle to point to a single-result index-typed op}}
transform.structured.split %0 after %1 { dimension = 0 } : !transform.any_op, !transform.any_op
}
func.func private @get_size() -> i64
func.func @dynamic(%arg0: tensor<100xf32>, %arg1: tensor<100xf32>) -> tensor<100xf32> {
// expected-note @below {{dynamic split point}}
%0 = func.call @get_size() : () -> i64
%1 = linalg.generic {
indexing_maps = [affine_map<(i) -> (i)>, affine_map<(i) -> (i)>],
iterator_types = ["parallel"]
}
ins(%arg0: tensor<100xf32>) outs(%arg1: tensor<100xf32>) {
^bb0(%3: f32, %4: f32):
linalg.yield %3 : f32
} -> tensor<100xf32>
return %1 : tensor<100xf32>
}
// -----
transform.sequence failures(propagate) {
^bb1(%arg1: !transform.any_op):
%0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op
%1 = transform.structured.match ops{["func.call"]} in %arg1 : (!transform.any_op) -> !transform.any_op
// expected-error @below {{expected the dynamic split point handle to point to as many operations (0) as the target handle (1)}}
transform.structured.split %0 after %1 { dimension = 0 } : !transform.any_op, !transform.any_op
}
func.func private @get_size() -> i64
func.func @dynamic(%arg0: tensor<100xf32>, %arg1: tensor<100xf32>) -> tensor<100xf32> {
%1 = linalg.generic {
indexing_maps = [affine_map<(i) -> (i)>, affine_map<(i) -> (i)>],
iterator_types = ["parallel"]
}
ins(%arg0: tensor<100xf32>) outs(%arg1: tensor<100xf32>) {
^bb0(%3: f32, %4: f32):
linalg.yield %3 : f32
} -> tensor<100xf32>
return %1 : tensor<100xf32>
}
// -----
transform.sequence failures(propagate) {
^bb1(%arg1: !transform.any_op):
%0 = transform.structured.match ops{["func.return"]} in %arg1 : (!transform.any_op) -> !transform.any_op
// expected-error @below {{only applies to structured ops}}
transform.structured.split %0 after 16 { dimension = 1 } : !transform.any_op
}
func.func @noop(%arg0: tensor<100xf32>, %arg1: tensor<100xf32>) -> tensor<100xf32> {
// expected-note @below {{target op}}
return %arg0 : tensor<100xf32>
}
// -----
transform.sequence failures(propagate) {
^bb1(%arg1: !transform.any_op):
%0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op
// expected-error @below {{dimension 1 does not exist in target op}}
transform.structured.split %0 after 16 { dimension = 1 } : !transform.any_op
}
func.func @one_d_static(%arg0: tensor<100xf32>, %arg1: tensor<100xf32>) -> tensor<100xf32> {
// expected-note @below {{target op}}
%0 = linalg.generic {
indexing_maps = [affine_map<(i) -> (i)>, affine_map<(i) -> (i)>],
iterator_types = ["parallel"]
}
ins(%arg0: tensor<100xf32>) outs(%arg1: tensor<100xf32>) {
^bb0(%0: f32, %1: f32):
linalg.yield %0 : f32
} -> tensor<100xf32>
return %0 : tensor<100xf32>
}
// -----
transform.sequence failures(propagate) {
^bb1(%arg1: !transform.any_op):
%0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op
// expected-error @below {{splitting does not produce the second part for a subset of targets}}
// expected-note @below {{expected splitting to produce the second part of all or none of the targets}}
%1:2 = transform.structured.split %0 after 142 { dimension = 0 } : !transform.any_op
}
func.func private @elem(%arg0: f32, %arg1: index, %arg2: index) -> f32
func.func @split_one_but_not_other(
%arg0: tensor<100xf32>, %arg1: tensor<100xf32>,
%arg2: tensor<200xf32>, %arg3: tensor<200xf32>)
-> (tensor<100xf32>, tensor<200xf32>) {
// expected-note @below {{first target with no second part}}
%0 = linalg.generic {
indexing_maps = [affine_map<(i) -> (i)>, affine_map<(i) -> (i)>],
iterator_types = ["parallel"]
}
ins(%arg0: tensor<100xf32>) outs(%arg1: tensor<100xf32>) {
^bb0(%arg4: f32, %arg5: f32):
%i = linalg.index 0 : index
%call_res = func.call @elem(%arg4, %i, %i) : (f32, index, index) -> f32
linalg.yield %call_res : f32
} -> tensor<100xf32>
%1 = linalg.generic {
indexing_maps = [affine_map<(i) -> (i)>, affine_map<(i) -> (i)>],
iterator_types = ["parallel"]
}
ins(%arg2: tensor<200xf32>) outs(%arg3: tensor<200xf32>) {
^bb0(%arg4: f32, %arg5: f32):
%i = linalg.index 0 : index
%call_res = func.call @elem(%arg4, %i, %i) : (f32, index, index) -> f32
linalg.yield %call_res : f32
} -> tensor<200xf32>
return %0, %1 : tensor<100xf32>, tensor<200xf32>
}
|