1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
|
// RUN: mlir-opt --test-transform-dialect-interpreter --mlir-print-local-scope --split-input-file --verify-diagnostics %s | FileCheck %s
transform.sequence failures(propagate) {
^bb0(%arg1: !transform.any_op):
%0 = transform.structured.match ops{["linalg.matmul"]} in %arg1 : (!transform.any_op) -> !transform.any_op
%1, %loops:3 = transform.structured.tile %0 [4, 4, 4] : (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op, !transform.any_op)
}
// CHECK-LABEL: func @tile_linalg_matmul(
// CHECK-SAME: %[[TA:[0-9a-z]+]]: tensor<128x128xf32>
// CHECK-SAME: %[[TB:[0-9a-z]+]]: tensor<128x128xf32>
// CHECK-SAME: %[[TC:[0-9a-z]+]]: tensor<128x128xf32>
// CHECK-SAME: -> tensor<128x128xf32> {
func.func @tile_linalg_matmul(
%arg0: tensor<128x128xf32>, %arg1: tensor<128x128xf32>, %arg2: tensor<128x128xf32>)
-> tensor<128x128xf32> {
// CHECK: %[[TD0:.*]] = scf.for {{.*}} to {{.*}} step {{.*}} iter_args(%[[TC0:.*]] = %[[TC]]) -> (tensor<128x128xf32>) {
// CHECK: %[[TD1:.*]] = scf.for {{.*}} to {{.*}} step {{.*}} iter_args(%[[TC1:.*]] = %[[TC0]]) -> (tensor<128x128xf32>) {
// CHECK: %[[TD2:.*]] = scf.for {{.*}} to {{.*}} step {{.*}} iter_args(%[[TC2:.*]] = %[[TC1]]) -> (tensor<128x128xf32>) {
// CHECK: %[[sTA:.*]] = tensor.extract_slice %[[TA]][{{.*}}] : tensor<128x128xf32> to tensor<4x4xf32>
// CHECK: %[[sTB:.*]] = tensor.extract_slice %[[TB]][{{.*}}] : tensor<128x128xf32> to tensor<4x4xf32>
// CHECK: %[[sTC:.*]] = tensor.extract_slice %[[TC2]][{{.*}}] : tensor<128x128xf32> to tensor<4x4xf32>
// CHECK: %[[sTD:.*]] = linalg.matmul ins(%[[sTA]], %[[sTB]] : tensor<4x4xf32>, tensor<4x4xf32>)
// CHECK-SAME: outs(%[[sTC]] : tensor<4x4xf32>) -> tensor<4x4xf32>
// CHECK: %[[TD:.*]] = tensor.insert_slice %[[sTD]] into %[[TC2]][{{.*}}] : tensor<4x4xf32> into tensor<128x128xf32>
// CHECK: scf.yield %[[TD]] : tensor<128x128xf32>
// CHECK: scf.yield %[[TD2]] : tensor<128x128xf32>
// CHECK: scf.yield %[[TD1]] : tensor<128x128xf32>
%0 = linalg.matmul ins(%arg0, %arg1: tensor<128x128xf32>, tensor<128x128xf32>)
outs(%arg2: tensor<128x128xf32>)
-> tensor<128x128xf32>
// CHECK: return %[[TD0]] : tensor<128x128xf32>
return %0 : tensor<128x128xf32>
}
// -----
transform.sequence failures(propagate) {
^bb0(%arg1: !transform.any_op):
%0 = transform.structured.match ops{["linalg.matmul"]} in %arg1 : (!transform.any_op) -> !transform.any_op
%1 = transform.structured.match ops{["func.call"]} in %arg1 : (!transform.any_op) -> !transform.any_op
%2, %loops:3 = transform.structured.tile %0 [%1, %1, 4] : (!transform.any_op, !transform.any_op, !transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op, !transform.any_op)
}
func.func private @get_dynamic_tile_size() -> index
// CHECK-LABEL: func @tile_linalg_matmul_dynamic(
// CHECK-SAME: %[[TA:[0-9a-z]+]]: tensor<128x128xf32>
// CHECK-SAME: %[[TB:[0-9a-z]+]]: tensor<128x128xf32>
// CHECK-SAME: %[[TC:[0-9a-z]+]]: tensor<128x128xf32>
// CHECK-SAME: -> tensor<128x128xf32> {
func.func @tile_linalg_matmul_dynamic(
%arg0: tensor<128x128xf32>, %arg1: tensor<128x128xf32>, %arg2: tensor<128x128xf32>)
-> tensor<128x128xf32> {
// CHECK: %[[TD0:.*]] = scf.for {{.*}} to {{.*}} step {{.*}} iter_args(%[[TC0:.*]] = %[[TC]]) -> (tensor<128x128xf32>) {
// CHECK: %[[TD1:.*]] = scf.for {{.*}} to {{.*}} step {{.*}} iter_args(%[[TC1:.*]] = %[[TC0]]) -> (tensor<128x128xf32>) {
// CHECK: %[[TD2:.*]] = scf.for {{.*}} to {{.*}} step {{.*}} iter_args(%[[TC2:.*]] = %[[TC1]]) -> (tensor<128x128xf32>) {
// CHECK: %[[sTA:.*]] = tensor.extract_slice %[[TA]][{{.*}}] : tensor<128x128xf32> to tensor<?x4xf32>
// CHECK: %[[sTB:.*]] = tensor.extract_slice %[[TB]][{{.*}}] : tensor<128x128xf32> to tensor<4x?xf32>
// CHECK: %[[sTC:.*]] = tensor.extract_slice %[[TC2]][{{.*}}] : tensor<128x128xf32> to tensor<?x?xf32>
// CHECK: %[[sTD:.*]] = linalg.matmul ins(%[[sTA]], %[[sTB]] : tensor<?x4xf32>, tensor<4x?xf32>)
// CHECK-SAME: outs(%[[sTC]] : tensor<?x?xf32>) -> tensor<?x?xf32>
// CHECK: %[[TD:.*]] = tensor.insert_slice %[[sTD]] into %[[TC2]][{{.*}}] : tensor<?x?xf32> into tensor<128x128xf32>
// CHECK: scf.yield %[[TD]] : tensor<128x128xf32>
// CHECK: scf.yield %[[TD2]] : tensor<128x128xf32>
// CHECK: scf.yield %[[TD1]] : tensor<128x128xf32>
%sz = func.call @get_dynamic_tile_size() : () -> index
%0 = linalg.matmul ins(%arg0, %arg1: tensor<128x128xf32>, tensor<128x128xf32>)
outs(%arg2: tensor<128x128xf32>)
-> tensor<128x128xf32>
// CHECK: return %[[TD0]] : tensor<128x128xf32>
return %0 : tensor<128x128xf32>
}
// -----
transform.sequence failures(propagate) {
^bb0(%arg1: !transform.any_op):
%0 = transform.structured.match ops{["linalg.matmul"]} in %arg1 : (!transform.any_op) -> !transform.any_op
// expected-note @below {{for this parameter}}
%1 = transform.test_produce_param (0 : i64) : !transform.param<i64>
// expected-error @below {{expected as many parameter values (0) as target ops (2)}}
transform.structured.tile %0 [%1, %1, %1]
: (!transform.any_op, !transform.param<i64>, !transform.param<i64>, !transform.param<i64>)
-> (!transform.any_op, !transform.any_op, !transform.any_op, !transform.any_op)
}
func.func @tile_linalg_matmul(
%arg0: tensor<128x128xf32>, %arg1: tensor<128x128xf32>, %arg2: tensor<128x128xf32>)
-> (tensor<128x128xf32>, tensor<128x128xf32>) {
%0 = linalg.matmul ins(%arg0, %arg1: tensor<128x128xf32>, tensor<128x128xf32>)
outs(%arg2: tensor<128x128xf32>)
-> tensor<128x128xf32>
%1 = linalg.matmul ins(%0, %arg1: tensor<128x128xf32>, tensor<128x128xf32>)
outs(%arg2: tensor<128x128xf32>)
-> tensor<128x128xf32>
return %0, %1 : tensor<128x128xf32>, tensor<128x128xf32>
}
// -----
transform.sequence failures(propagate) {
^bb0(%arg1: !transform.any_op):
%0 = transform.structured.match ops{["linalg.matmul"]} in %arg1 : (!transform.any_op) -> !transform.any_op
// expected-note @below {{for this handle}}
%1 = transform.structured.match ops{["arith.constant"]} in %arg1 : (!transform.any_op) -> !transform.any_op
// expected-error @below {{expected as many dynamic size-producing operations (0) as target ops (2)}}
transform.structured.tile %0 [%1, %1, 1]
: (!transform.any_op, !transform.any_op, !transform.any_op)
-> (!transform.any_op, !transform.any_op, !transform.any_op, !transform.any_op)
}
func.func @tile_linalg_matmul(
%arg0: tensor<128x128xf32>, %arg1: tensor<128x128xf32>, %arg2: tensor<128x128xf32>)
-> (tensor<128x128xf32>, tensor<128x128xf32>) {
%0 = linalg.matmul ins(%arg0, %arg1: tensor<128x128xf32>, tensor<128x128xf32>)
outs(%arg2: tensor<128x128xf32>)
-> tensor<128x128xf32>
%1 = linalg.matmul ins(%0, %arg1: tensor<128x128xf32>, tensor<128x128xf32>)
outs(%arg2: tensor<128x128xf32>)
-> tensor<128x128xf32>
return %0, %1 : tensor<128x128xf32>, tensor<128x128xf32>
}
// -----
// CHECK-LABEL: tile_tensor_pad
func.func @tile_tensor_pad(
%arg0 : tensor<?x?xf32>, %cst : f32, %low: index, %high: index)
-> tensor<20x40xf32>
{
// CHECK: scf.forall
// CHECK: scf.if
// CHECK: tensor.generate
// CHECK: else
// CHECK: tensor.pad {{.*}} nofold
%0 = tensor.pad %arg0 nofold low[%low, %low] high[%high, %high] {
^bb0(%arg9: index, %arg10: index):
tensor.yield %cst : f32
} : tensor<?x?xf32> to tensor<20x40xf32>
return %0 : tensor<20x40xf32>
}
transform.sequence failures(propagate) {
^bb0(%arg1: !transform.any_op):
%0 = transform.structured.match ops{["tensor.pad"]} in %arg1 : (!transform.any_op) -> !transform.any_op
transform.structured.tile_to_forall_op %0 tile_sizes[1, 1]
: (!transform.any_op) -> (!transform.any_op, !transform.any_op)
}
// -----
#map = affine_map<(d0) -> (d0)>
module {
func.func @scalable_tile(%arg0: tensor<?xf32>, %arg1: tensor<?xf32>, %arg2: tensor<?xf32>, %arg3: f32) -> tensor<?xf32> {
%0 = linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]} ins(%arg0, %arg1 : tensor<?xf32>, tensor<?xf32>) outs(%arg2 : tensor<?xf32>) {
^bb0(%in_1: f32, %in_2: f32, %out: f32):
%1 = arith.addf %in_1, %in_2 : f32
%2 = arith.mulf %arg3, %1 : f32
linalg.yield %2 : f32
} -> tensor<?xf32>
return %0 : tensor<?xf32>
}
}
// CHECK-LABEL: func.func @scalable_tile(
// CHECK-SAME: %[[ARG_0:.*]]: tensor<?xf32>, %[[ARG_1:.*]]: tensor<?xf32>, %[[ARG_2:.*]]: tensor<?xf32>,
// CHECK: %[[C4:.*]] = arith.constant 0 : index
// CHECK: %[[DIM:.*]] = tensor.dim %[[ARG_0]], %[[C4]] : tensor<?xf32>
// CHECK: %[[VEC_SIZE:.*]] = arith.constant 4 : index
// CHECK: %[[VS:.*]] = vector.vscale
// CHECK: %[[STEP:.*]] = arith.muli %[[VEC_SIZE]], %[[VS]] : index
// CHECK: %[[C0:.*]] = arith.constant 0 : index
// CHECK: scf.for %[[IV:.*]] = %[[C0]] to %[[DIM]] step %[[STEP]] iter_args(%[[VAL:.*]] = %[[ARG_2]]) -> (tensor<?xf32>) {
// CHECK: %[[SIZE:.*]] = affine.min affine_map<(d0)[s0, s1] -> (s0, -d0 + s1)>(%[[IV]])[%[[STEP]], %[[DIM]]]
// CHECK: %[[SLICE_ARG0:.*]] = tensor.extract_slice %[[ARG_0]][%[[IV]]] [%[[SIZE]]] [1] : tensor<?xf32> to tensor<?xf32>
// CHECK: %[[SLICE_ARG1:.*]] = tensor.extract_slice %[[ARG_1]][%[[IV]]] [%[[SIZE]]] [1] : tensor<?xf32> to tensor<?xf32>
// CHECK: %[[SLICE_ARG2:.*]] = tensor.extract_slice %[[VAL]][%[[IV]]] [%[[SIZE]]] [1] : tensor<?xf32> to tensor<?xf32>
// CHECK: linalg.generic {indexing_maps = {{.*}}, iterator_types = ["parallel"]} ins(%[[SLICE_ARG0]], %[[SLICE_ARG1]] : tensor<?xf32>, tensor<?xf32>) outs(%[[SLICE_ARG2]] : tensor<?xf32>) {
transform.sequence failures(propagate) {
^bb0(%arg1: !transform.any_op):
%0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op
%1, %loop = transform.structured.tile %0 [[4]] : (!transform.any_op) -> (!transform.any_op, !transform.any_op)
}
// -----
// CHECK-LABEL: func.func @scalable_and_fixed_length_tile
// CHECK: %[[STEP_0:.*]] = arith.constant 4 : index
// CHECK: %[[STEP_1:.*]] = arith.constant 4 : index
// CHECK: %[[C4:.*]] = arith.constant 4 : index
// CHECK: %[[VS:.*]] = vector.vscale
// CHECK: %[[STEP_2:.*]] = arith.muli %[[C4]], %[[VS]] : index
// CHECK: %[[C0:.*]] = arith.constant 0 : index
// CHECK: %[[C128:.*]] = arith.constant 128 : index
// CHECK: scf.for %[[VAL_11:.*]] = %[[C0]] to %[[C128]] step %[[STEP_0]]
// CHECK: %[[C0_1:.*]] = arith.constant 0 : index
// CHECK: %[[C128_1:.*]] = arith.constant 128 : index
// CHECK: scf.for %[[VAL_16:.*]] = %[[C0_1]] to %[[C128_1]] step %[[STEP_1]]
// CHECK: %[[C0_2:.*]] = arith.constant 0 : index
// CHECK: %[[C128_2:.*]] = arith.constant 128 : index
// CHECK: scf.for %{{.*}} = %[[C0_2]] to %[[C128_2]] step %[[STEP_2]]
func.func @scalable_and_fixed_length_tile(
%arg0: tensor<128x128xf32>, %arg1: tensor<128x128xf32>, %arg2: tensor<128x128xf32>)
-> tensor<128x128xf32> {
%0 = linalg.matmul ins(%arg0, %arg1: tensor<128x128xf32>, tensor<128x128xf32>)
outs(%arg2: tensor<128x128xf32>)
-> tensor<128x128xf32>
return %0 : tensor<128x128xf32>
}
transform.sequence failures(propagate) {
^bb0(%arg1: !transform.any_op):
%0 = transform.structured.match ops{["linalg.matmul"]} in %arg1 : (!transform.any_op) -> !transform.any_op
%1, %loops:3 = transform.structured.tile %0 [4, 4, [4]] : (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op, !transform.any_op)
}
|