File: transform-op-tile.mlir

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (222 lines) | stat: -rw-r--r-- 12,086 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
// RUN: mlir-opt --test-transform-dialect-interpreter --mlir-print-local-scope --split-input-file --verify-diagnostics %s | FileCheck %s

transform.sequence failures(propagate) {
^bb0(%arg1: !transform.any_op):
  %0 = transform.structured.match ops{["linalg.matmul"]} in %arg1 : (!transform.any_op) -> !transform.any_op
  %1, %loops:3 = transform.structured.tile %0 [4, 4, 4] : (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op, !transform.any_op)
}

// CHECK-LABEL: func @tile_linalg_matmul(
// CHECK-SAME:    %[[TA:[0-9a-z]+]]: tensor<128x128xf32>
// CHECK-SAME:    %[[TB:[0-9a-z]+]]: tensor<128x128xf32>
// CHECK-SAME:    %[[TC:[0-9a-z]+]]: tensor<128x128xf32>
// CHECK-SAME:  -> tensor<128x128xf32> {
func.func @tile_linalg_matmul(
  %arg0: tensor<128x128xf32>, %arg1: tensor<128x128xf32>, %arg2: tensor<128x128xf32>)
    -> tensor<128x128xf32> {
//      CHECK: %[[TD0:.*]] = scf.for {{.*}} to {{.*}} step {{.*}} iter_args(%[[TC0:.*]] = %[[TC]]) -> (tensor<128x128xf32>) {
//      CHECK:   %[[TD1:.*]] = scf.for {{.*}} to {{.*}} step {{.*}} iter_args(%[[TC1:.*]] = %[[TC0]]) -> (tensor<128x128xf32>) {
//      CHECK:     %[[TD2:.*]] = scf.for {{.*}} to {{.*}} step {{.*}} iter_args(%[[TC2:.*]] = %[[TC1]]) -> (tensor<128x128xf32>) {
//      CHECK:       %[[sTA:.*]] = tensor.extract_slice %[[TA]][{{.*}}] : tensor<128x128xf32> to tensor<4x4xf32>
//      CHECK:       %[[sTB:.*]] = tensor.extract_slice %[[TB]][{{.*}}] : tensor<128x128xf32> to tensor<4x4xf32>
//      CHECK:       %[[sTC:.*]] = tensor.extract_slice %[[TC2]][{{.*}}] : tensor<128x128xf32> to tensor<4x4xf32>
//      CHECK:       %[[sTD:.*]] = linalg.matmul ins(%[[sTA]], %[[sTB]] : tensor<4x4xf32>, tensor<4x4xf32>)
// CHECK-SAME:                                   outs(%[[sTC]] : tensor<4x4xf32>)  -> tensor<4x4xf32>
//      CHECK:       %[[TD:.*]] = tensor.insert_slice %[[sTD]] into %[[TC2]][{{.*}}]  : tensor<4x4xf32> into tensor<128x128xf32>
//      CHECK:       scf.yield %[[TD]] : tensor<128x128xf32>
//      CHECK:     scf.yield %[[TD2]] : tensor<128x128xf32>
//      CHECK:   scf.yield %[[TD1]] : tensor<128x128xf32>
  %0 = linalg.matmul  ins(%arg0, %arg1: tensor<128x128xf32>, tensor<128x128xf32>)
                     outs(%arg2: tensor<128x128xf32>)
    -> tensor<128x128xf32>

//      CHECK: return %[[TD0]] : tensor<128x128xf32>
  return %0 : tensor<128x128xf32>
}

// -----

transform.sequence failures(propagate) {
^bb0(%arg1: !transform.any_op):
  %0 = transform.structured.match ops{["linalg.matmul"]} in %arg1 : (!transform.any_op) -> !transform.any_op
  %1 = transform.structured.match ops{["func.call"]} in %arg1 : (!transform.any_op) -> !transform.any_op
  %2, %loops:3 = transform.structured.tile %0 [%1, %1, 4] : (!transform.any_op, !transform.any_op, !transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op, !transform.any_op)
}

func.func private @get_dynamic_tile_size() -> index

// CHECK-LABEL: func @tile_linalg_matmul_dynamic(
// CHECK-SAME:    %[[TA:[0-9a-z]+]]: tensor<128x128xf32>
// CHECK-SAME:    %[[TB:[0-9a-z]+]]: tensor<128x128xf32>
// CHECK-SAME:    %[[TC:[0-9a-z]+]]: tensor<128x128xf32>
// CHECK-SAME:  -> tensor<128x128xf32> {
func.func @tile_linalg_matmul_dynamic(
  %arg0: tensor<128x128xf32>, %arg1: tensor<128x128xf32>, %arg2: tensor<128x128xf32>)
    -> tensor<128x128xf32> {
//      CHECK: %[[TD0:.*]] = scf.for {{.*}} to {{.*}} step {{.*}} iter_args(%[[TC0:.*]] = %[[TC]]) -> (tensor<128x128xf32>) {
//      CHECK:   %[[TD1:.*]] = scf.for {{.*}} to {{.*}} step {{.*}} iter_args(%[[TC1:.*]] = %[[TC0]]) -> (tensor<128x128xf32>) {
//      CHECK:     %[[TD2:.*]] = scf.for {{.*}} to {{.*}} step {{.*}} iter_args(%[[TC2:.*]] = %[[TC1]]) -> (tensor<128x128xf32>) {
//      CHECK:       %[[sTA:.*]] = tensor.extract_slice %[[TA]][{{.*}}] : tensor<128x128xf32> to tensor<?x4xf32>
//      CHECK:       %[[sTB:.*]] = tensor.extract_slice %[[TB]][{{.*}}] : tensor<128x128xf32> to tensor<4x?xf32>
//      CHECK:       %[[sTC:.*]] = tensor.extract_slice %[[TC2]][{{.*}}] : tensor<128x128xf32> to tensor<?x?xf32>
//      CHECK:       %[[sTD:.*]] = linalg.matmul ins(%[[sTA]], %[[sTB]] : tensor<?x4xf32>, tensor<4x?xf32>)
// CHECK-SAME:                                   outs(%[[sTC]] : tensor<?x?xf32>)  -> tensor<?x?xf32>
//      CHECK:       %[[TD:.*]] = tensor.insert_slice %[[sTD]] into %[[TC2]][{{.*}}]  : tensor<?x?xf32> into tensor<128x128xf32>
//      CHECK:       scf.yield %[[TD]] : tensor<128x128xf32>
//      CHECK:     scf.yield %[[TD2]] : tensor<128x128xf32>
//      CHECK:   scf.yield %[[TD1]] : tensor<128x128xf32>
  %sz = func.call @get_dynamic_tile_size() : () -> index
  %0 = linalg.matmul  ins(%arg0, %arg1: tensor<128x128xf32>, tensor<128x128xf32>)
                     outs(%arg2: tensor<128x128xf32>)
    -> tensor<128x128xf32>

//      CHECK: return %[[TD0]] : tensor<128x128xf32>
  return %0 : tensor<128x128xf32>
}

// -----

transform.sequence failures(propagate) {
^bb0(%arg1: !transform.any_op):
  %0 = transform.structured.match ops{["linalg.matmul"]} in %arg1 : (!transform.any_op) -> !transform.any_op
  // expected-note @below {{for this parameter}}
  %1 = transform.test_produce_param (0 : i64) : !transform.param<i64>
  // expected-error @below {{expected as many parameter values (0) as target ops (2)}}
  transform.structured.tile %0 [%1, %1, %1]
    : (!transform.any_op, !transform.param<i64>, !transform.param<i64>, !transform.param<i64>)
    -> (!transform.any_op, !transform.any_op, !transform.any_op, !transform.any_op)
}

func.func @tile_linalg_matmul(
  %arg0: tensor<128x128xf32>, %arg1: tensor<128x128xf32>, %arg2: tensor<128x128xf32>)
    -> (tensor<128x128xf32>, tensor<128x128xf32>) {
  %0 = linalg.matmul  ins(%arg0, %arg1: tensor<128x128xf32>, tensor<128x128xf32>)
                     outs(%arg2: tensor<128x128xf32>)
    -> tensor<128x128xf32>
  %1 = linalg.matmul  ins(%0, %arg1: tensor<128x128xf32>, tensor<128x128xf32>)
                     outs(%arg2: tensor<128x128xf32>)
    -> tensor<128x128xf32>
  return %0, %1 : tensor<128x128xf32>, tensor<128x128xf32>
}

// -----

transform.sequence failures(propagate) {
^bb0(%arg1: !transform.any_op):
  %0 = transform.structured.match ops{["linalg.matmul"]} in %arg1 : (!transform.any_op) -> !transform.any_op
  // expected-note @below {{for this handle}}
  %1 = transform.structured.match ops{["arith.constant"]} in %arg1 : (!transform.any_op) -> !transform.any_op
  // expected-error @below {{expected as many dynamic size-producing operations (0) as target ops (2)}}
  transform.structured.tile %0 [%1, %1, 1]
    : (!transform.any_op, !transform.any_op, !transform.any_op)
    -> (!transform.any_op, !transform.any_op, !transform.any_op, !transform.any_op)
}

func.func @tile_linalg_matmul(
  %arg0: tensor<128x128xf32>, %arg1: tensor<128x128xf32>, %arg2: tensor<128x128xf32>)
    -> (tensor<128x128xf32>, tensor<128x128xf32>) {
  %0 = linalg.matmul  ins(%arg0, %arg1: tensor<128x128xf32>, tensor<128x128xf32>)
                     outs(%arg2: tensor<128x128xf32>)
    -> tensor<128x128xf32>
  %1 = linalg.matmul  ins(%0, %arg1: tensor<128x128xf32>, tensor<128x128xf32>)
                     outs(%arg2: tensor<128x128xf32>)
    -> tensor<128x128xf32>
  return %0, %1 : tensor<128x128xf32>, tensor<128x128xf32>
}

// -----

// CHECK-LABEL: tile_tensor_pad
func.func @tile_tensor_pad(
  %arg0 : tensor<?x?xf32>, %cst : f32, %low: index, %high: index)
    -> tensor<20x40xf32>
{
  // CHECK: scf.forall
  // CHECK:   scf.if
  // CHECK:     tensor.generate
  // CHECK:   else
  // CHECK:     tensor.pad {{.*}} nofold
  %0 = tensor.pad %arg0 nofold low[%low, %low] high[%high, %high] {
        ^bb0(%arg9: index, %arg10: index):
          tensor.yield %cst : f32
  } : tensor<?x?xf32> to tensor<20x40xf32>
  return %0 : tensor<20x40xf32>
}

transform.sequence failures(propagate) {
^bb0(%arg1: !transform.any_op):
  %0 = transform.structured.match ops{["tensor.pad"]} in %arg1 : (!transform.any_op) -> !transform.any_op
  transform.structured.tile_to_forall_op %0 tile_sizes[1, 1]
         : (!transform.any_op) -> (!transform.any_op, !transform.any_op)
}

// -----

#map = affine_map<(d0) -> (d0)>

module {
  func.func @scalable_tile(%arg0: tensor<?xf32>, %arg1: tensor<?xf32>, %arg2: tensor<?xf32>, %arg3: f32) -> tensor<?xf32> {
    %0 = linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = ["parallel"]} ins(%arg0, %arg1 : tensor<?xf32>, tensor<?xf32>) outs(%arg2 : tensor<?xf32>) {
    ^bb0(%in_1: f32, %in_2: f32, %out: f32):
      %1 = arith.addf %in_1, %in_2 : f32
      %2 = arith.mulf %arg3, %1 : f32
      linalg.yield %2 : f32
    } -> tensor<?xf32>
    return %0 : tensor<?xf32>
  }
}

// CHECK-LABEL:   func.func @scalable_tile(
// CHECK-SAME:      %[[ARG_0:.*]]: tensor<?xf32>, %[[ARG_1:.*]]: tensor<?xf32>, %[[ARG_2:.*]]: tensor<?xf32>,
// CHECK:           %[[C4:.*]] = arith.constant 0 : index
// CHECK:           %[[DIM:.*]] = tensor.dim %[[ARG_0]], %[[C4]] : tensor<?xf32>
// CHECK:           %[[VEC_SIZE:.*]] = arith.constant 4 : index
// CHECK:           %[[VS:.*]] = vector.vscale
// CHECK:           %[[STEP:.*]] = arith.muli %[[VEC_SIZE]], %[[VS]] : index
// CHECK:           %[[C0:.*]] = arith.constant 0 : index
// CHECK:           scf.for %[[IV:.*]] = %[[C0]] to %[[DIM]] step %[[STEP]] iter_args(%[[VAL:.*]] = %[[ARG_2]]) -> (tensor<?xf32>) {
// CHECK:             %[[SIZE:.*]] = affine.min affine_map<(d0)[s0, s1] -> (s0, -d0 + s1)>(%[[IV]])[%[[STEP]], %[[DIM]]]
// CHECK:             %[[SLICE_ARG0:.*]] = tensor.extract_slice %[[ARG_0]][%[[IV]]] [%[[SIZE]]] [1] : tensor<?xf32> to tensor<?xf32>
// CHECK:             %[[SLICE_ARG1:.*]] = tensor.extract_slice %[[ARG_1]][%[[IV]]] [%[[SIZE]]] [1] : tensor<?xf32> to tensor<?xf32>
// CHECK:             %[[SLICE_ARG2:.*]] = tensor.extract_slice %[[VAL]][%[[IV]]] [%[[SIZE]]] [1] : tensor<?xf32> to tensor<?xf32>
// CHECK:             linalg.generic {indexing_maps = {{.*}}, iterator_types = ["parallel"]} ins(%[[SLICE_ARG0]], %[[SLICE_ARG1]] : tensor<?xf32>, tensor<?xf32>) outs(%[[SLICE_ARG2]] : tensor<?xf32>) {

transform.sequence failures(propagate) {
  ^bb0(%arg1: !transform.any_op):
    %0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op
    %1, %loop = transform.structured.tile %0 [[4]] : (!transform.any_op) -> (!transform.any_op, !transform.any_op)
}

// -----

// CHECK-LABEL:   func.func @scalable_and_fixed_length_tile
// CHECK:           %[[STEP_0:.*]] = arith.constant 4 : index
// CHECK:           %[[STEP_1:.*]] = arith.constant 4 : index
// CHECK:           %[[C4:.*]] = arith.constant 4 : index
// CHECK:           %[[VS:.*]] = vector.vscale
// CHECK:           %[[STEP_2:.*]] = arith.muli %[[C4]], %[[VS]] : index
// CHECK:           %[[C0:.*]] = arith.constant 0 : index
// CHECK:           %[[C128:.*]] = arith.constant 128 : index
// CHECK:           scf.for %[[VAL_11:.*]] = %[[C0]] to %[[C128]] step %[[STEP_0]]
// CHECK:             %[[C0_1:.*]] = arith.constant 0 : index
// CHECK:             %[[C128_1:.*]] = arith.constant 128 : index
// CHECK:             scf.for %[[VAL_16:.*]] = %[[C0_1]] to %[[C128_1]] step %[[STEP_1]]
// CHECK:               %[[C0_2:.*]] = arith.constant 0 : index
// CHECK:               %[[C128_2:.*]] = arith.constant 128 : index
// CHECK:               scf.for %{{.*}} = %[[C0_2]] to %[[C128_2]] step %[[STEP_2]]

func.func @scalable_and_fixed_length_tile(
  %arg0: tensor<128x128xf32>, %arg1: tensor<128x128xf32>, %arg2: tensor<128x128xf32>)
    -> tensor<128x128xf32> {
  %0 = linalg.matmul  ins(%arg0, %arg1: tensor<128x128xf32>, tensor<128x128xf32>)
                     outs(%arg2: tensor<128x128xf32>)
    -> tensor<128x128xf32>

  return %0 : tensor<128x128xf32>
}

transform.sequence failures(propagate) {
^bb0(%arg1: !transform.any_op):
  %0 = transform.structured.match ops{["linalg.matmul"]} in %arg1 : (!transform.any_op) -> !transform.any_op
  %1, %loops:3 = transform.structured.tile %0 [4, 4, [4]] : (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op, !transform.any_op)
}