1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
|
// RUN: mlir-opt -normalize-memrefs -allow-unregistered-dialect %s | FileCheck %s
// This file tests whether the memref type having non-trivial map layouts
// are normalized to trivial (identity) layouts.
// CHECK-LABEL: func @permute()
func.func @permute() {
%A = memref.alloc() : memref<64x256xf32, affine_map<(d0, d1) -> (d1, d0)>>
affine.for %i = 0 to 64 {
affine.for %j = 0 to 256 {
%1 = affine.load %A[%i, %j] : memref<64x256xf32, affine_map<(d0, d1) -> (d1, d0)>>
"prevent.dce"(%1) : (f32) -> ()
}
}
memref.dealloc %A : memref<64x256xf32, affine_map<(d0, d1) -> (d1, d0)>>
return
}
// The old memref alloc should disappear.
// CHECK-NOT: memref<64x256xf32>
// CHECK: [[MEM:%[0-9a-zA-Z_]+]] = memref.alloc() : memref<256x64xf32>
// CHECK-NEXT: affine.for %[[I:arg[0-9a-zA-Z_]+]] = 0 to 64 {
// CHECK-NEXT: affine.for %[[J:arg[0-9a-zA-Z_]+]] = 0 to 256 {
// CHECK-NEXT: affine.load [[MEM]][%[[J]], %[[I]]] : memref<256x64xf32>
// CHECK-NEXT: "prevent.dce"
// CHECK-NEXT: }
// CHECK-NEXT: }
// CHECK-NEXT: memref.dealloc [[MEM]]
// CHECK-NEXT: return
// CHECK-LABEL: func @shift
func.func @shift(%idx : index) {
// CHECK-NEXT: memref.alloc() : memref<65xf32>
%A = memref.alloc() : memref<64xf32, affine_map<(d0) -> (d0 + 1)>>
// CHECK-NEXT: affine.load %{{.*}}[symbol(%arg0) + 1] : memref<65xf32>
affine.load %A[%idx] : memref<64xf32, affine_map<(d0) -> (d0 + 1)>>
affine.for %i = 0 to 64 {
%1 = affine.load %A[%i] : memref<64xf32, affine_map<(d0) -> (d0 + 1)>>
"prevent.dce"(%1) : (f32) -> ()
// CHECK: %{{.*}} = affine.load %{{.*}}[%arg{{.*}} + 1] : memref<65xf32>
}
return
}
// CHECK-LABEL: func @high_dim_permute()
func.func @high_dim_permute() {
// CHECK-NOT: memref<64x128x256xf32,
%A = memref.alloc() : memref<64x128x256xf32, affine_map<(d0, d1, d2) -> (d2, d0, d1)>>
// CHECK: %[[I:arg[0-9a-zA-Z_]+]]
affine.for %i = 0 to 64 {
// CHECK: %[[J:arg[0-9a-zA-Z_]+]]
affine.for %j = 0 to 128 {
// CHECK: %[[K:arg[0-9a-zA-Z_]+]]
affine.for %k = 0 to 256 {
%1 = affine.load %A[%i, %j, %k] : memref<64x128x256xf32, affine_map<(d0, d1, d2) -> (d2, d0, d1)>>
// CHECK: %{{.*}} = affine.load %{{.*}}[%[[K]], %[[I]], %[[J]]] : memref<256x64x128xf32>
"prevent.dce"(%1) : (f32) -> ()
}
}
}
return
}
// CHECK-LABEL: func @invalid_map
func.func @invalid_map() {
%A = memref.alloc() : memref<64x128xf32, affine_map<(d0, d1) -> (d0, -d1 - 10)>>
// CHECK: %{{.*}} = memref.alloc() : memref<64x128xf32,
return
}
// A tiled layout.
// CHECK-LABEL: func @data_tiling
func.func @data_tiling(%idx : index) {
// CHECK: memref.alloc() : memref<8x32x8x16xf32>
%A = memref.alloc() : memref<64x512xf32, affine_map<(d0, d1) -> (d0 floordiv 8, d1 floordiv 16, d0 mod 8, d1 mod 16)>>
// CHECK: affine.load %{{.*}}[symbol(%arg0) floordiv 8, symbol(%arg0) floordiv 16, symbol(%arg0) mod 8, symbol(%arg0) mod 16]
%1 = affine.load %A[%idx, %idx] : memref<64x512xf32, affine_map<(d0, d1) -> (d0 floordiv 8, d1 floordiv 16, d0 mod 8, d1 mod 16)>>
"prevent.dce"(%1) : (f32) -> ()
return
}
// Strides 2 and 4 along respective dimensions.
// CHECK-LABEL: func @strided
func.func @strided() {
%A = memref.alloc() : memref<64x128xf32, affine_map<(d0, d1) -> (2*d0, 4*d1)>>
// CHECK: affine.for %[[IV0:.*]] =
affine.for %i = 0 to 64 {
// CHECK: affine.for %[[IV1:.*]] =
affine.for %j = 0 to 128 {
// CHECK: affine.load %{{.*}}[%[[IV0]] * 2, %[[IV1]] * 4] : memref<127x509xf32>
%1 = affine.load %A[%i, %j] : memref<64x128xf32, affine_map<(d0, d1) -> (2*d0, 4*d1)>>
"prevent.dce"(%1) : (f32) -> ()
}
}
return
}
// Strided, but the strides are in the linearized space.
// CHECK-LABEL: func @strided_cumulative
func.func @strided_cumulative() {
%A = memref.alloc() : memref<2x5xf32, affine_map<(d0, d1) -> (3*d0 + 17*d1)>>
// CHECK: affine.for %[[IV0:.*]] =
affine.for %i = 0 to 2 {
// CHECK: affine.for %[[IV1:.*]] =
affine.for %j = 0 to 5 {
// CHECK: affine.load %{{.*}}[%[[IV0]] * 3 + %[[IV1]] * 17] : memref<72xf32>
%1 = affine.load %A[%i, %j] : memref<2x5xf32, affine_map<(d0, d1) -> (3*d0 + 17*d1)>>
"prevent.dce"(%1) : (f32) -> ()
}
}
return
}
// Symbolic operand for alloc, although unused. Tests replaceAllMemRefUsesWith
// when the index remap has symbols.
// CHECK-LABEL: func @symbolic_operands
func.func @symbolic_operands(%s : index) {
// CHECK: memref.alloc() : memref<100xf32>
%A = memref.alloc()[%s] : memref<10x10xf32, affine_map<(d0,d1)[s0] -> (10*d0 + d1)>>
affine.for %i = 0 to 10 {
affine.for %j = 0 to 10 {
// CHECK: affine.load %{{.*}}[%{{.*}} * 10 + %{{.*}}] : memref<100xf32>
%1 = affine.load %A[%i, %j] : memref<10x10xf32, affine_map<(d0,d1)[s0] -> (10*d0 + d1)>>
"prevent.dce"(%1) : (f32) -> ()
}
}
return
}
// Semi-affine maps, normalization not implemented yet.
// CHECK-LABEL: func @semi_affine_layout_map
func.func @semi_affine_layout_map(%s0: index, %s1: index) {
%A = memref.alloc()[%s0, %s1] : memref<256x1024xf32, affine_map<(d0, d1)[s0, s1] -> (d0*s0 + d1*s1)>>
affine.for %i = 0 to 256 {
affine.for %j = 0 to 1024 {
// CHECK: memref<256x1024xf32, #map{{[0-9a-zA-Z_]+}}>
affine.load %A[%i, %j] : memref<256x1024xf32, affine_map<(d0, d1)[s0, s1] -> (d0*s0 + d1*s1)>>
}
}
return
}
// CHECK-LABEL: func @alignment
func.func @alignment() {
%A = memref.alloc() {alignment = 32 : i64}: memref<64x128x256xf32, affine_map<(d0, d1, d2) -> (d2, d0, d1)>>
// CHECK-NEXT: memref.alloc() {alignment = 32 : i64} : memref<256x64x128xf32>
return
}
#tile = affine_map < (i)->(i floordiv 4, i mod 4) >
// Following test cases check the inter-procedural memref normalization.
// Test case 1: Check normalization for multiple memrefs in a function argument list.
// CHECK-LABEL: func @multiple_argument_type
// CHECK-SAME: (%[[A:arg[0-9a-zA-Z_]+]]: memref<4x4xf64>, %[[B:arg[0-9a-zA-Z_]+]]: f64, %[[C:arg[0-9a-zA-Z_]+]]: memref<2x4xf64>, %[[D:arg[0-9a-zA-Z_]+]]: memref<24xf64>) -> f64
func.func @multiple_argument_type(%A: memref<16xf64, #tile>, %B: f64, %C: memref<8xf64, #tile>, %D: memref<24xf64>) -> f64 {
%a = affine.load %A[0] : memref<16xf64, #tile>
%p = arith.mulf %a, %a : f64
affine.store %p, %A[10] : memref<16xf64, #tile>
call @single_argument_type(%C): (memref<8xf64, #tile>) -> ()
return %B : f64
}
// CHECK: %[[a:[0-9a-zA-Z_]+]] = affine.load %[[A]][0, 0] : memref<4x4xf64>
// CHECK: %[[p:[0-9a-zA-Z_]+]] = arith.mulf %[[a]], %[[a]] : f64
// CHECK: affine.store %[[p]], %[[A]][2, 2] : memref<4x4xf64>
// CHECK: call @single_argument_type(%[[C]]) : (memref<2x4xf64>) -> ()
// CHECK: return %[[B]] : f64
// Test case 2: Check normalization for single memref argument in a function.
// CHECK-LABEL: func @single_argument_type
// CHECK-SAME: (%[[C:arg[0-9a-zA-Z_]+]]: memref<2x4xf64>)
func.func @single_argument_type(%C : memref<8xf64, #tile>) {
%a = memref.alloc(): memref<8xf64, #tile>
%b = memref.alloc(): memref<16xf64, #tile>
%d = arith.constant 23.0 : f64
%e = memref.alloc(): memref<24xf64>
call @single_argument_type(%a): (memref<8xf64, #tile>) -> ()
call @single_argument_type(%C): (memref<8xf64, #tile>) -> ()
call @multiple_argument_type(%b, %d, %a, %e): (memref<16xf64, #tile>, f64, memref<8xf64, #tile>, memref<24xf64>) -> f64
return
}
// CHECK: %[[a:[0-9a-zA-Z_]+]] = memref.alloc() : memref<2x4xf64>
// CHECK: %[[b:[0-9a-zA-Z_]+]] = memref.alloc() : memref<4x4xf64>
// CHECK: %cst = arith.constant 2.300000e+01 : f64
// CHECK: %[[e:[0-9a-zA-Z_]+]] = memref.alloc() : memref<24xf64>
// CHECK: call @single_argument_type(%[[a]]) : (memref<2x4xf64>) -> ()
// CHECK: call @single_argument_type(%[[C]]) : (memref<2x4xf64>) -> ()
// CHECK: call @multiple_argument_type(%[[b]], %cst, %[[a]], %[[e]]) : (memref<4x4xf64>, f64, memref<2x4xf64>, memref<24xf64>) -> f64
// Test case 3: Check function returning any other type except memref.
// CHECK-LABEL: func @non_memref_ret
// CHECK-SAME: (%[[C:arg[0-9a-zA-Z_]+]]: memref<2x4xf64>) -> i1
func.func @non_memref_ret(%A: memref<8xf64, #tile>) -> i1 {
%d = arith.constant 1 : i1
return %d : i1
}
// Test cases here onwards deal with normalization of memref in function signature, caller site.
// Test case 4: Check successful memref normalization in case of inter/intra-recursive calls.
// CHECK-LABEL: func @ret_multiple_argument_type
// CHECK-SAME: (%[[A:arg[0-9a-zA-Z_]+]]: memref<4x4xf64>, %[[B:arg[0-9a-zA-Z_]+]]: f64, %[[C:arg[0-9a-zA-Z_]+]]: memref<2x4xf64>) -> (memref<2x4xf64>, f64)
func.func @ret_multiple_argument_type(%A: memref<16xf64, #tile>, %B: f64, %C: memref<8xf64, #tile>) -> (memref<8xf64, #tile>, f64) {
%a = affine.load %A[0] : memref<16xf64, #tile>
%p = arith.mulf %a, %a : f64
%cond = arith.constant 1 : i1
cf.cond_br %cond, ^bb1, ^bb2
^bb1:
%res1, %res2 = call @ret_single_argument_type(%C) : (memref<8xf64, #tile>) -> (memref<16xf64, #tile>, memref<8xf64, #tile>)
return %res2, %p: memref<8xf64, #tile>, f64
^bb2:
return %C, %p: memref<8xf64, #tile>, f64
}
// CHECK: %[[a:[0-9a-zA-Z_]+]] = affine.load %[[A]][0, 0] : memref<4x4xf64>
// CHECK: %[[p:[0-9a-zA-Z_]+]] = arith.mulf %[[a]], %[[a]] : f64
// CHECK: %true = arith.constant true
// CHECK: cf.cond_br %true, ^bb1, ^bb2
// CHECK: ^bb1: // pred: ^bb0
// CHECK: %[[res:[0-9a-zA-Z_]+]]:2 = call @ret_single_argument_type(%[[C]]) : (memref<2x4xf64>) -> (memref<4x4xf64>, memref<2x4xf64>)
// CHECK: return %[[res]]#1, %[[p]] : memref<2x4xf64>, f64
// CHECK: ^bb2: // pred: ^bb0
// CHECK: return %{{.*}}, %{{.*}} : memref<2x4xf64>, f64
// CHECK-LABEL: func @ret_single_argument_type
// CHECK-SAME: (%[[C:arg[0-9a-zA-Z_]+]]: memref<2x4xf64>) -> (memref<4x4xf64>, memref<2x4xf64>)
func.func @ret_single_argument_type(%C: memref<8xf64, #tile>) -> (memref<16xf64, #tile>, memref<8xf64, #tile>){
%a = memref.alloc() : memref<8xf64, #tile>
%b = memref.alloc() : memref<16xf64, #tile>
%d = arith.constant 23.0 : f64
call @ret_single_argument_type(%a) : (memref<8xf64, #tile>) -> (memref<16xf64, #tile>, memref<8xf64, #tile>)
call @ret_single_argument_type(%C) : (memref<8xf64, #tile>) -> (memref<16xf64, #tile>, memref<8xf64, #tile>)
%res1, %res2 = call @ret_multiple_argument_type(%b, %d, %a) : (memref<16xf64, #tile>, f64, memref<8xf64, #tile>) -> (memref<8xf64, #tile>, f64)
%res3, %res4 = call @ret_single_argument_type(%res1) : (memref<8xf64, #tile>) -> (memref<16xf64, #tile>, memref<8xf64, #tile>)
return %b, %a: memref<16xf64, #tile>, memref<8xf64, #tile>
}
// CHECK: %[[a:[0-9a-zA-Z_]+]] = memref.alloc() : memref<2x4xf64>
// CHECK: %[[b:[0-9a-zA-Z_]+]] = memref.alloc() : memref<4x4xf64>
// CHECK: %cst = arith.constant 2.300000e+01 : f64
// CHECK: %[[resA:[0-9a-zA-Z_]+]]:2 = call @ret_single_argument_type(%[[a]]) : (memref<2x4xf64>) -> (memref<4x4xf64>, memref<2x4xf64>)
// CHECK: %[[resB:[0-9a-zA-Z_]+]]:2 = call @ret_single_argument_type(%[[C]]) : (memref<2x4xf64>) -> (memref<4x4xf64>, memref<2x4xf64>)
// CHECK: %[[resC:[0-9a-zA-Z_]+]]:2 = call @ret_multiple_argument_type(%[[b]], %cst, %[[a]]) : (memref<4x4xf64>, f64, memref<2x4xf64>) -> (memref<2x4xf64>, f64)
// CHECK: %[[resD:[0-9a-zA-Z_]+]]:2 = call @ret_single_argument_type(%[[resC]]#0) : (memref<2x4xf64>) -> (memref<4x4xf64>, memref<2x4xf64>)
// CHECK: return %{{.*}}, %{{.*}} : memref<4x4xf64>, memref<2x4xf64>
// Test case set #5: To check normalization in a chain of interconnected functions.
// CHECK-LABEL: func @func_A
// CHECK-SAME: (%[[A:arg[0-9a-zA-Z_]+]]: memref<2x4xf64>)
func.func @func_A(%A: memref<8xf64, #tile>) {
call @func_B(%A) : (memref<8xf64, #tile>) -> ()
return
}
// CHECK: call @func_B(%[[A]]) : (memref<2x4xf64>) -> ()
// CHECK-LABEL: func @func_B
// CHECK-SAME: (%[[A:arg[0-9a-zA-Z_]+]]: memref<2x4xf64>)
func.func @func_B(%A: memref<8xf64, #tile>) {
call @func_C(%A) : (memref<8xf64, #tile>) -> ()
return
}
// CHECK: call @func_C(%[[A]]) : (memref<2x4xf64>) -> ()
// CHECK-LABEL: func @func_C
// CHECK-SAME: (%[[A:arg[0-9a-zA-Z_]+]]: memref<2x4xf64>)
func.func @func_C(%A: memref<8xf64, #tile>) {
return
}
// Test case set #6: Checking if no normalization takes place in a scenario: A -> B -> C and B has an unsupported type.
// CHECK-LABEL: func @some_func_A
// CHECK-SAME: (%[[A:arg[0-9a-zA-Z_]+]]: memref<8xf64, #map{{[0-9a-zA-Z_]+}}>)
func.func @some_func_A(%A: memref<8xf64, #tile>) {
call @some_func_B(%A) : (memref<8xf64, #tile>) -> ()
return
}
// CHECK: call @some_func_B(%[[A]]) : (memref<8xf64, #map{{[0-9a-zA-Z_]+}}>) -> ()
// CHECK-LABEL: func @some_func_B
// CHECK-SAME: (%[[A:arg[0-9a-zA-Z_]+]]: memref<8xf64, #map{{[0-9a-zA-Z_]+}}>)
func.func @some_func_B(%A: memref<8xf64, #tile>) {
"test.test"(%A) : (memref<8xf64, #tile>) -> ()
call @some_func_C(%A) : (memref<8xf64, #tile>) -> ()
return
}
// CHECK: call @some_func_C(%[[A]]) : (memref<8xf64, #map{{[0-9a-zA-Z_]+}}>) -> ()
// CHECK-LABEL: func @some_func_C
// CHECK-SAME: (%[[A:arg[0-9a-zA-Z_]+]]: memref<8xf64, #map{{[0-9a-zA-Z_]+}}>)
func.func @some_func_C(%A: memref<8xf64, #tile>) {
return
}
// Test case set #7: Check normalization in case of external functions.
// CHECK-LABEL: func private @external_func_A
// CHECK-SAME: (memref<4x4xf64>)
func.func private @external_func_A(memref<16xf64, #tile>) -> ()
// CHECK-LABEL: func private @external_func_B
// CHECK-SAME: (memref<4x4xf64>, f64) -> memref<2x4xf64>
func.func private @external_func_B(memref<16xf64, #tile>, f64) -> (memref<8xf64, #tile>)
// CHECK-LABEL: func @simply_call_external()
func.func @simply_call_external() {
%a = memref.alloc() : memref<16xf64, #tile>
call @external_func_A(%a) : (memref<16xf64, #tile>) -> ()
return
}
// CHECK: %[[a:[0-9a-zA-Z_]+]] = memref.alloc() : memref<4x4xf64>
// CHECK: call @external_func_A(%[[a]]) : (memref<4x4xf64>) -> ()
// CHECK-LABEL: func @use_value_of_external
// CHECK-SAME: (%[[A:arg[0-9a-zA-Z_]+]]: memref<4x4xf64>, %[[B:arg[0-9a-zA-Z_]+]]: f64) -> memref<2x4xf64>
func.func @use_value_of_external(%A: memref<16xf64, #tile>, %B: f64) -> (memref<8xf64, #tile>) {
%res = call @external_func_B(%A, %B) : (memref<16xf64, #tile>, f64) -> (memref<8xf64, #tile>)
return %res : memref<8xf64, #tile>
}
// CHECK: %[[res:[0-9a-zA-Z_]+]] = call @external_func_B(%[[A]], %[[B]]) : (memref<4x4xf64>, f64) -> memref<2x4xf64>
// CHECK: return %{{.*}} : memref<2x4xf64>
// CHECK-LABEL: func @affine_parallel_norm
func.func @affine_parallel_norm() -> memref<8xf32, #tile> {
%c = arith.constant 23.0 : f32
%a = memref.alloc() : memref<8xf32, #tile>
// CHECK: affine.parallel (%{{.*}}) = (0) to (8) reduce ("assign") -> (memref<2x4xf32>)
%1 = affine.parallel (%i) = (0) to (8) reduce ("assign") -> memref<8xf32, #tile> {
affine.store %c, %a[%i] : memref<8xf32, #tile>
// CHECK: affine.yield %{{.*}} : memref<2x4xf32>
affine.yield %a : memref<8xf32, #tile>
}
return %1 : memref<8xf32, #tile>
}
#map = affine_map<(d0, d1)[s0] -> (d0 * 3 + s0 + d1)>
// CHECK-LABEL: func.func @map_symbol
func.func @map_symbol() -> memref<2x3xf32, #map> {
%c1 = arith.constant 1 : index
// The constant isn't propagated here and the utility can't compute a constant
// upper bound for the memref dimension in the absence of that.
// CHECK: memref.alloc()[%{{.*}}]
%0 = memref.alloc()[%c1] : memref<2x3xf32, #map>
return %0 : memref<2x3xf32, #map>
}
#neg = affine_map<(d0, d1) -> (d0, d1 - 100)>
// CHECK-LABEL: func.func @neg_map
func.func @neg_map() -> memref<2x3xf32, #neg> {
// This isn't a valid map for normalization.
// CHECK: memref.alloc() : memref<2x3xf32, #{{.*}}>
%0 = memref.alloc() : memref<2x3xf32, #neg>
return %0 : memref<2x3xf32, #neg>
}
// CHECK-LABEL: func @memref_with_strided_offset
func.func @memref_with_strided_offset(%arg0: tensor<128x512xf32>, %arg1: index, %arg2: index) -> tensor<16x512xf32> {
%c0 = arith.constant 0 : index
%0 = bufferization.to_memref %arg0 : memref<128x512xf32, strided<[?, ?], offset: ?>>
%subview = memref.subview %0[%arg2, 0] [%arg1, 512] [1, 1] : memref<128x512xf32, strided<[?, ?], offset: ?>> to memref<?x512xf32, strided<[?, ?], offset: ?>>
// CHECK: %{{.*}} = memref.cast %{{.*}} : memref<?x512xf32, strided<[?, ?], offset: ?>> to memref<16x512xf32, strided<[?, ?], offset: ?>>
%cast = memref.cast %subview : memref<?x512xf32, strided<[?, ?], offset: ?>> to memref<16x512xf32, strided<[?, ?], offset: ?>>
%1 = bufferization.to_tensor %cast : memref<16x512xf32, strided<[?, ?], offset: ?>>
return %1 : tensor<16x512xf32>
}
|