File: transform-pipeline-shared.mlir

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (182 lines) | stat: -rw-r--r-- 7,539 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
// RUN: mlir-opt %s --test-transform-dialect-interpreter --split-input-file --verify-diagnostics | FileCheck %s

func.func @simple_depth_2_unpeeled(%global: memref<?xf32>, %result: memref<?xf32> ) {
  %c0 = arith.constant 0 : index
  %c100 = arith.constant 100 : index
  %c4 = arith.constant 4 : index
  %shared = memref.alloc(%c100) : memref<?xf32, #gpu.address_space<workgroup>>
  %c0f = arith.constant 0.0 : f32
  // Predication is not currently implemented for transfer_read/write, so this is expected to fail.
  // expected-note @below {{couldn't predicate}}
  scf.for %i = %c0 to %c100 step %c4 iter_args(%accum = %c0f) -> f32 {
    %mem = vector.transfer_read %global[%i], %c0f : memref<?xf32>, vector<4xf32>
    vector.transfer_write %mem, %shared[%i] : vector<4xf32>, memref<?xf32, #gpu.address_space<workgroup>>
    %0 = arith.addf %accum, %accum : f32
    scf.yield %0 : f32
  }
  return
}

!t = !transform.any_op

transform.sequence failures(propagate) {
^bb0(%arg0: !t):
  %loop = transform.structured.match ops{["scf.for"]} in %arg0 : (!t) -> !t
  // expected-error @below {{irreversible pipelining failure}}
  // expected-note @below {{try setting "peel_epilogue"}}
  transform.nvgpu.pipeline_shared_memory_copies failures(propagate) %loop { depth = 2 } : (!t) -> !t
}

// -----

// Loop pipeliner is tested separately, just verify the overall shape of the IR here.

func.func private @body(index, memref<?xf32, #gpu.address_space<workgroup>>)

// CHECK-LABEL: @simple_depth_2_peeled
// CHECK-SAME: %[[ARG:.+]]: memref
func.func @simple_depth_2_peeled(%global: memref<?xf32>) {
  %c0 = arith.constant 0 : index
  %c100 = arith.constant 100 : index
  %c200 = arith.constant 200 : index
  %c4 = arith.constant 4 : index
  // CHECK: memref.alloc
  %shared = memref.alloc(%c200) : memref<?xf32, #gpu.address_space<workgroup>>
  %c0f = arith.constant 0.0 : f32
  // CHECK: %[[LOADED1:.+]] = vector.transfer_read %[[ARG]]
  // CHECK: %[[LOADED2:.+]] = vector.transfer_read %[[ARG]]
  // CHECK: %[[LOOP:.+]]:2 = scf.for {{.*}} iter_args(%[[IA1:.+]] = %[[LOADED1]], %[[IA2:.+]] = %[[LOADED2]])
  // CHECK:   vector.transfer_write %[[IA1]]
  // CHECK:   func.call @body
  // CHECK:   %[[LOCAL_LOADED:.+]] = vector.transfer_read %[[ARG]]
  // CHECK:   scf.yield %[[IA2]], %[[LOCAL_LOADED]]
  scf.for %i = %c0 to %c100 step %c4 {
    %mem = vector.transfer_read %global[%i], %c0f : memref<?xf32>, vector<4xf32>
    vector.transfer_write %mem, %shared[%i] : vector<4xf32>, memref<?xf32, #gpu.address_space<workgroup>>
    func.call @body(%i, %shared) : (index, memref<?xf32, #gpu.address_space<workgroup>>) -> ()
  }
  // CHECK: vector.transfer_write %[[LOOP]]#0
  // CHECK: call @body
  // CHECK: vector.transfer_write %[[LOOP]]#1
  // CHECK: call @body
  return
}

!t = !transform.any_op

transform.sequence failures(propagate) {
^bb0(%arg0: !t):
  %loop = transform.structured.match ops{["scf.for"]} in %arg0 : (!t) -> !t
  transform.nvgpu.pipeline_shared_memory_copies failures(propagate) %loop { depth = 2, peel_epilogue } : (!t) -> !t
}

// -----

// CHECK-LABEL: @async_depth_2_predicated
// CHECK-SAME: %[[GLOBAL:.+]]: memref
func.func @async_depth_2_predicated(%global: memref<?xf32>) {
  %c0 = arith.constant 0 : index
  %c98 = arith.constant 98 : index
  %c100 = arith.constant 100 : index
  %c200 = arith.constant 200 : index
  // CHECK: %[[C4:.+]] = arith.constant 4
  %c4 = arith.constant 4 : index
  // CHECK: %[[SHARED:.+]] = memref.alloc{{.*}} #gpu.address_space<workgroup>
  %shared = memref.alloc(%c200) : memref<?xf32, #gpu.address_space<workgroup>>
  %c0f = arith.constant 0.0 : f32
  // CHECK: %[[TOKEN0:.+]] = nvgpu.device_async_copy
  // CHECK: %[[TOKEN1:.+]] = nvgpu.device_async_copy
  // CHECK: scf.for %[[I:.+]] = {{.*}} iter_args
  // CHECK-SAME: %[[ITER_ARG0:.+]] = %[[TOKEN0]]
  // CHECK-SAME: %[[ITER_ARG1:.+]] = %[[TOKEN1]]
  scf.for %i = %c0 to %c98 step %c4 {
    // Condition for the predication "select" below.
    // CHECK:   %[[C90:.+]] = arith.constant 90
    // CHECK:   %[[CMP0:.+]] = arith.cmpi slt, %[[I]], %[[C90]]
    // CHECK:   nvgpu.device_async_wait %[[ITER_ARG0]] {numGroups = 1

    // Original "select" with updated induction variable.
    // CHECK:   %[[C96:.+]] = arith.constant 96
    // CHECK:   %[[C8:.+]] = arith.constant 8
    // CHECK:   %[[I_PLUS_8:.+]] = arith.addi %[[I]], %[[C8]]
    // CHECK:   %[[CMP1:.+]] = arith.cmpi slt, %[[I_PLUS_8]], %[[C96]]
    // CHECK:   %[[C2:.+]] = arith.constant 2
    // CHECK:   %[[SELECTED0:.+]] = arith.select %[[CMP1]], %[[C4]], %[[C2]]
    %c96 = arith.constant 96 : index
    %cond = arith.cmpi slt, %i, %c96 : index
    %c2 = arith.constant 2 : index
    %read_size = arith.select %cond, %c4, %c2 : index

    // Updated induction variables (two more) for the device_async_copy below.
    // These are generated repeatedly by the pipeliner.
    // CHECK:   %[[C8_2:.+]] = arith.constant 8
    // CHECK:   %[[I_PLUS_8_2:.+]] = arith.addi %[[I]], %[[C8_2]]
    // CHECK:   %[[C8_3:.+]] = arith.constant 8
    // CHECK:   %[[I_PLUS_8_3:.+]] = arith.addi %[[I]], %[[C8_3]]

    // The second "select" is generated by predication and selects 0 for
    // the two last iterations.
    // CHECK:   %[[C0:.+]] = arith.constant 0
    // CHECK:   %[[SELECTED1:.+]] = arith.select %[[CMP0]], %[[SELECTED0]], %[[C0]]
    // CHECK:   %[[ASYNC_TOKEN:.+]] = nvgpu.device_async_copy %[[GLOBAL]][%[[I_PLUS_8_3]]], %[[SHARED]][%[[I_PLUS_8_2]]], 4, %[[SELECTED1]]
    %token = nvgpu.device_async_copy %global[%i], %shared[%i], 4, %read_size
      : memref<?xf32> to memref<?xf32, #gpu.address_space<workgroup>>

    nvgpu.device_async_wait %token

    // CHECK: scf.yield %[[ITER_ARG1]], %[[ASYNC_TOKEN]]
  }
  // There is no need to wait for the last copies as it it was fully predicated
  // out and doesn't load the original data.
  // CHECK-NOT: nvgpu.device_async_wait
  return
}


!t = !transform.any_op

transform.sequence failures(propagate) {
^bb0(%arg0: !t):
  %loop = transform.structured.match ops{["scf.for"]} in %arg0 : (!t) -> !t
  transform.nvgpu.pipeline_shared_memory_copies failures(propagate) %loop { depth = 2 } : (!t) -> !t
}

// -----

// CHECK-LABEL: @async_depth_2_peeled
func.func @async_depth_2_peeled(%global: memref<?xf32>) {
  %c0 = arith.constant 0 : index
  %c98 = arith.constant 98 : index
  %c100 = arith.constant 100 : index
  %c4 = arith.constant 4 : index
  %shared = memref.alloc(%c100) : memref<?xf32, #gpu.address_space<workgroup>>
  %c0f = arith.constant 0.0 : f32
  // CHECK: nvgpu.device_async_copy
  // CHECK: nvgpu.device_async_copy
  // CHECK: scf.for
  // CHECK:   nvgpu.device_async_wait %{{.*}} {numGroups = 1
  // CHECK:   arith.select
  // CHECK:   nvgpu.device_async_copy
  // CHECK:   scf.yield
  // CHECK: nvgpu.device_async_wait %{{.*}} {numGroups = 1
  // CHEKC: nvgpu.device_async_wait %{{.*}} {numGroups = 0
  scf.for %i = %c0 to %c98 step %c4 {
    %c96 = arith.constant 96 : index
    %cond = arith.cmpi slt, %i, %c96 : index
    %c2 = arith.constant 2 : index
    %read_size = arith.select %cond, %c4, %c2 : index
    %token = nvgpu.device_async_copy %global[%i], %shared[%i], 4, %read_size
      : memref<?xf32> to memref<?xf32, #gpu.address_space<workgroup>>
    nvgpu.device_async_wait %token
  }
  return
}


!t = !transform.any_op

transform.sequence failures(propagate) {
^bb0(%arg0: !t):
  %loop = transform.structured.match ops{["scf.for"]} in %arg0 : (!t) -> !t
  transform.nvgpu.pipeline_shared_memory_copies failures(propagate) %loop { depth = 2, peel_epilogue } : (!t) -> !t
}