1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
|
// RUN: mlir-opt %s -scf-for-loop-peeling -canonicalize -split-input-file | FileCheck %s
// RUN: mlir-opt %s -scf-for-loop-peeling=skip-partial=false -canonicalize -split-input-file | FileCheck %s -check-prefix=CHECK-NO-SKIP
// CHECK-DAG: #[[MAP0:.*]] = affine_map<()[s0, s1, s2] -> (s1 - (-s0 + s1) mod s2)>
// CHECK-DAG: #[[MAP1:.*]] = affine_map<(d0)[s0] -> (-d0 + s0)>
// CHECK: func @fully_dynamic_bounds(
// CHECK-SAME: %[[LB:.*]]: index, %[[UB:.*]]: index, %[[STEP:.*]]: index
// CHECK: %[[C0_I32:.*]] = arith.constant 0 : i32
// CHECK: %[[NEW_UB:.*]] = affine.apply #[[MAP0]]()[%[[LB]], %[[UB]], %[[STEP]]]
// CHECK: %[[LOOP:.*]] = scf.for %[[IV:.*]] = %[[LB]] to %[[NEW_UB]]
// CHECK-SAME: step %[[STEP]] iter_args(%[[ACC:.*]] = %[[C0_I32]]) -> (i32) {
// CHECK: %[[CAST:.*]] = arith.index_cast %[[STEP]] : index to i32
// CHECK: %[[ADD:.*]] = arith.addi %[[ACC]], %[[CAST]] : i32
// CHECK: scf.yield %[[ADD]]
// CHECK: }
// CHECK: %[[RESULT:.*]] = scf.for %[[IV2:.*]] = %[[NEW_UB]] to %[[UB]]
// CHECK-SAME: step %[[STEP]] iter_args(%[[ACC2:.*]] = %[[LOOP]]) -> (i32) {
// CHECK: %[[REM:.*]] = affine.apply #[[MAP1]](%[[IV2]])[%[[UB]]]
// CHECK: %[[CAST2:.*]] = arith.index_cast %[[REM]]
// CHECK: %[[ADD2:.*]] = arith.addi %[[ACC2]], %[[CAST2]]
// CHECK: scf.yield %[[ADD2]]
// CHECK: }
// CHECK: return %[[RESULT]]
#map = affine_map<(d0, d1)[s0] -> (s0, d0 - d1)>
func.func @fully_dynamic_bounds(%lb : index, %ub: index, %step: index) -> i32 {
%c0 = arith.constant 0 : i32
%r = scf.for %iv = %lb to %ub step %step iter_args(%arg = %c0) -> i32 {
%s = affine.min #map(%ub, %iv)[%step]
%casted = arith.index_cast %s : index to i32
%0 = arith.addi %arg, %casted : i32
scf.yield %0 : i32
}
return %r : i32
}
// -----
// CHECK: func @fully_static_bounds(
// CHECK-DAG: %[[C0_I32:.*]] = arith.constant 0 : i32
// CHECK-DAG: %[[C1_I32:.*]] = arith.constant 1 : i32
// CHECK-DAG: %[[C4_I32:.*]] = arith.constant 4 : i32
// CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index
// CHECK-DAG: %[[C4:.*]] = arith.constant 4 : index
// CHECK-DAG: %[[C16:.*]] = arith.constant 16 : index
// CHECK: %[[LOOP:.*]] = scf.for %[[IV:.*]] = %[[C0]] to %[[C16]]
// CHECK-SAME: step %[[C4]] iter_args(%[[ACC:.*]] = %[[C0_I32]]) -> (i32) {
// CHECK: %[[ADD:.*]] = arith.addi %[[ACC]], %[[C4_I32]] : i32
// CHECK: scf.yield %[[ADD]]
// CHECK: }
// CHECK: %[[RESULT:.*]] = arith.addi %[[LOOP]], %[[C1_I32]] : i32
// CHECK: return %[[RESULT]]
#map = affine_map<(d0, d1)[s0] -> (s0, d0 - d1)>
func.func @fully_static_bounds() -> i32 {
%c0_i32 = arith.constant 0 : i32
%lb = arith.constant 0 : index
%step = arith.constant 4 : index
%ub = arith.constant 17 : index
%r = scf.for %iv = %lb to %ub step %step
iter_args(%arg = %c0_i32) -> i32 {
%s = affine.min #map(%ub, %iv)[%step]
%casted = arith.index_cast %s : index to i32
%0 = arith.addi %arg, %casted : i32
scf.yield %0 : i32
}
return %r : i32
}
// -----
// CHECK-DAG: #[[MAP0:.*]] = affine_map<()[s0] -> ((s0 floordiv 4) * 4)>
// CHECK-DAG: #[[MAP1:.*]] = affine_map<(d0)[s0] -> (-d0 + s0)>
// CHECK: func @dynamic_upper_bound(
// CHECK-SAME: %[[UB:.*]]: index
// CHECK-DAG: %[[C0_I32:.*]] = arith.constant 0 : i32
// CHECK-DAG: %[[C4_I32:.*]] = arith.constant 4 : i32
// CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index
// CHECK-DAG: %[[C4:.*]] = arith.constant 4 : index
// CHECK: %[[NEW_UB:.*]] = affine.apply #[[MAP0]]()[%[[UB]]]
// CHECK: %[[LOOP:.*]] = scf.for %[[IV:.*]] = %[[C0]] to %[[NEW_UB]]
// CHECK-SAME: step %[[C4]] iter_args(%[[ACC:.*]] = %[[C0_I32]]) -> (i32) {
// CHECK: %[[ADD:.*]] = arith.addi %[[ACC]], %[[C4_I32]] : i32
// CHECK: scf.yield %[[ADD]]
// CHECK: }
// CHECK: %[[RESULT:.*]] = scf.for %[[IV2:.*]] = %[[NEW_UB]] to %[[UB]]
// CHECK-SAME: step %[[C4]] iter_args(%[[ACC2:.*]] = %[[LOOP]]) -> (i32) {
// CHECK: %[[REM:.*]] = affine.apply #[[MAP1]](%[[IV2]])[%[[UB]]]
// CHECK: %[[CAST2:.*]] = arith.index_cast %[[REM]]
// CHECK: %[[ADD2:.*]] = arith.addi %[[ACC2]], %[[CAST2]]
// CHECK: scf.yield %[[ADD2]]
// CHECK: }
// CHECK: return %[[RESULT]]
#map = affine_map<(d0, d1)[s0] -> (s0, d0 - d1)>
func.func @dynamic_upper_bound(%ub : index) -> i32 {
%c0_i32 = arith.constant 0 : i32
%lb = arith.constant 0 : index
%step = arith.constant 4 : index
%r = scf.for %iv = %lb to %ub step %step
iter_args(%arg = %c0_i32) -> i32 {
%s = affine.min #map(%ub, %iv)[%step]
%casted = arith.index_cast %s : index to i32
%0 = arith.addi %arg, %casted : i32
scf.yield %0 : i32
}
return %r : i32
}
// -----
// CHECK-DAG: #[[MAP0:.*]] = affine_map<()[s0] -> ((s0 floordiv 4) * 4)>
// CHECK-DAG: #[[MAP1:.*]] = affine_map<(d0)[s0] -> (-d0 + s0)>
// CHECK: func @no_loop_results(
// CHECK-SAME: %[[UB:.*]]: index, %[[MEMREF:.*]]: memref<i32>
// CHECK-DAG: %[[C4_I32:.*]] = arith.constant 4 : i32
// CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index
// CHECK-DAG: %[[C4:.*]] = arith.constant 4 : index
// CHECK: %[[NEW_UB:.*]] = affine.apply #[[MAP0]]()[%[[UB]]]
// CHECK: scf.for %[[IV:.*]] = %[[C0]] to %[[NEW_UB]] step %[[C4]] {
// CHECK: %[[LOAD:.*]] = memref.load %[[MEMREF]][]
// CHECK: %[[ADD:.*]] = arith.addi %[[LOAD]], %[[C4_I32]] : i32
// CHECK: memref.store %[[ADD]], %[[MEMREF]]
// CHECK: }
// CHECK: scf.for %[[IV2:.*]] = %[[NEW_UB]] to %[[UB]] step %[[C4]] {
// CHECK: %[[REM:.*]] = affine.apply #[[MAP1]](%[[IV2]])[%[[UB]]]
// CHECK: %[[LOAD2:.*]] = memref.load %[[MEMREF]][]
// CHECK: %[[CAST2:.*]] = arith.index_cast %[[REM]]
// CHECK: %[[ADD2:.*]] = arith.addi %[[LOAD2]], %[[CAST2]]
// CHECK: memref.store %[[ADD2]], %[[MEMREF]]
// CHECK: }
// CHECK: return
#map = affine_map<(d0, d1)[s0] -> (s0, d0 - d1)>
func.func @no_loop_results(%ub : index, %d : memref<i32>) {
%c0_i32 = arith.constant 0 : i32
%lb = arith.constant 0 : index
%step = arith.constant 4 : index
scf.for %iv = %lb to %ub step %step {
%s = affine.min #map(%ub, %iv)[%step]
%r = memref.load %d[] : memref<i32>
%casted = arith.index_cast %s : index to i32
%0 = arith.addi %r, %casted : i32
memref.store %0, %d[] : memref<i32>
}
return
}
// -----
// Test rewriting of affine.min/max ops. Make sure that more general cases than
// the ones above are successfully rewritten. Also make sure that the pattern
// does not rewrite ops that should not be rewritten.
// CHECK-DAG: #[[MAP1:.*]] = affine_map<()[s0] -> (s0 + 1)>
// CHECK-DAG: #[[MAP2:.*]] = affine_map<(d0)[s0, s1] -> (-d0 + s1 - 1, s0)>
// CHECK-DAG: #[[MAP3:.*]] = affine_map<(d0)[s0, s1, s2] -> (-d0 + s1, s2, s0)>
// CHECK-DAG: #[[MAP4:.*]] = affine_map<()[s0] -> (-s0)>
// CHECK-DAG: #[[MAP5:.*]] = affine_map<(d0)[s0] -> (-d0 + s0)>
// CHECK-DAG: #[[MAP6:.*]] = affine_map<(d0)[s0] -> (-d0 + s0 + 1)>
// CHECK-DAG: #[[MAP7:.*]] = affine_map<(d0)[s0] -> (-d0 + s0 - 1)>
// CHECK-DAG: #[[MAP8:.*]] = affine_map<(d0)[s0] -> (d0 - s0)>
// CHECK: func @test_affine_op_rewrite(
// CHECK-SAME: %[[LB:.*]]: index, %[[UB:.*]]: index, %[[STEP:.*]]: index,
// CHECK-SAME: %[[MEMREF:.*]]: memref<?xindex>, %[[SOME_VAL:.*]]: index
// CHECK: scf.for %[[IV:.*]] = %[[LB]] to %{{.*}} step %[[STEP]] {
// (affine.min folded away)
// CHECK: memref.store %[[STEP]]
// (affine.min folded away)
// CHECK: memref.store %[[STEP]]
// CHECK: %[[RES2:.*]] = affine.apply #[[MAP1]]()[%[[STEP]]]
// CHECK: memref.store %[[RES2]]
// CHECK: %[[RES3:.*]] = affine.min #[[MAP2]](%[[IV]])[%[[STEP]], %[[UB]]]
// CHECK: memref.store %[[RES3]]
// CHECK: %[[RES4:.*]] = affine.min #[[MAP3]](%[[IV]])[%[[STEP]], %[[UB]], %[[SOME_VAL]]]
// CHECK: memref.store %[[RES4]]
// CHECK: %[[RES5:.*]] = affine.apply #[[MAP4]]()[%[[STEP]]]
// CHECK: memref.store %[[RES5]]
// CHECK: }
// CHECK: scf.for %[[IV2:.*]] = {{.*}} to %[[UB]] step %[[STEP]] {
// CHECK: %[[RES_IF_0:.*]] = affine.apply #[[MAP5]](%[[IV2]])[%[[UB]]]
// CHECK: memref.store %[[RES_IF_0]]
// CHECK: %[[RES_IF_1:.*]] = affine.apply #[[MAP6]](%[[IV2]])[%[[UB]]]
// CHECK: memref.store %[[RES_IF_1]]
// CHECK: %[[RES_IF_2:.*]] = affine.apply #[[MAP6]](%[[IV2]])[%[[UB]]]
// CHECK: memref.store %[[RES_IF_2]]
// CHECK: %[[RES_IF_3:.*]] = affine.apply #[[MAP7]](%[[IV2]])[%[[UB]]]
// CHECK: memref.store %[[RES_IF_3]]
// CHECK: %[[RES_IF_4:.*]] = affine.min #[[MAP3]](%[[IV2]])[%[[STEP]], %[[UB]], %[[SOME_VAL]]]
// CHECK: memref.store %[[RES_IF_4]]
// CHECK: %[[RES_IF_5:.*]] = affine.apply #[[MAP8]](%[[IV2]])[%[[UB]]]
// CHECK: memref.store %[[RES_IF_5]]
#map0 = affine_map<(d0, d1)[s0] -> (s0, d0 - d1)>
#map1 = affine_map<(d0, d1)[s0] -> (d0 - d1 + 1, s0)>
#map2 = affine_map<(d0, d1)[s0] -> (s0 + 1, d0 - d1 + 1)>
#map3 = affine_map<(d0, d1)[s0] -> (s0, d0 - d1 - 1)>
#map4 = affine_map<(d0, d1, d2)[s0] -> (s0, d0 - d1, d2)>
#map5 = affine_map<(d0, d1)[s0] -> (-s0, -d0 + d1)>
func.func @test_affine_op_rewrite(%lb : index, %ub: index,
%step: index, %d : memref<?xindex>,
%some_val: index) {
%c0 = arith.constant 0 : index
%c1 = arith.constant 1 : index
%c2 = arith.constant 2 : index
%c3 = arith.constant 3 : index
%c4 = arith.constant 4 : index
%c5 = arith.constant 5 : index
scf.for %iv = %lb to %ub step %step {
// Most common case: Rewrite min(%ub - %iv, %step) to %step.
%m0 = affine.min #map0(%ub, %iv)[%step]
memref.store %m0, %d[%c0] : memref<?xindex>
// Increase %ub - %iv a little bit, pattern should still apply.
%m1 = affine.min #map1(%ub, %iv)[%step]
memref.store %m1, %d[%c1] : memref<?xindex>
// Rewrite min(%ub - %iv + 1, %step + 1) to %step + 1.
%m2 = affine.min #map2(%ub, %iv)[%step]
memref.store %m2, %d[%c2] : memref<?xindex>
// min(%ub - %iv - 1, %step) cannot be simplified because %ub - %iv - 1
// can be smaller than %step. (Can be simplified in if-statement.)
%m3 = affine.min #map3(%ub, %iv)[%step]
memref.store %m3, %d[%c3] : memref<?xindex>
// min(%ub - %iv, %step, %some_val) cannot be simplified because the range
// of %some_val is unknown.
%m4 = affine.min #map4(%ub, %iv, %some_val)[%step]
memref.store %m4, %d[%c4] : memref<?xindex>
// Rewrite max(-%ub + %iv, -%step) to -%ub + %iv (and -%step in the scf.if).
%m5 = affine.max #map5(%ub, %iv)[%step]
memref.store %m5, %d[%c5] : memref<?xindex>
}
return
}
// -----
// CHECK: func @nested_loops
// CHECK: scf.for {{.*}} {
// CHECK: scf.for {{.*}} {
// CHECK: }
// CHECK: scf.for {{.*}} {
// CHECK: }
// CHECK: }
// CHECK: scf.for {{.*}} {
// CHECK: scf.for {{.*}} {
// CHECK: }
// CHECK-NOT: scf.for
// CHECK: }
// CHECK-NO-SKIP: func @nested_loops
// CHECK-NO-SKIP: scf.for {{.*}} {
// CHECK-NO-SKIP: scf.for {{.*}} {
// CHECK-NO-SKIP: }
// CHECK-NO-SKIP: scf.for {{.*}} {
// CHECK-NO-SKIP: }
// CHECK-NO-SKIP: }
// CHECK-NO-SKIP: scf.for {{.*}} {
// CHECK-NO-SKIP: scf.for {{.*}} {
// CHECK-NO-SKIP: }
// CHECK-NO-SKIP: scf.for {{.*}} {
// CHECK-NO-SKIP: }
// CHECK-NO-SKIP: }
#map = affine_map<(d0, d1)[s0] -> (s0, d0 - d1)>
func.func @nested_loops(%lb0: index, %lb1 : index, %ub0: index, %ub1: index,
%step: index) -> i32 {
%c0 = arith.constant 0 : i32
%r0 = scf.for %iv0 = %lb0 to %ub0 step %step iter_args(%arg0 = %c0) -> i32 {
%r1 = scf.for %iv1 = %lb1 to %ub1 step %step iter_args(%arg1 = %arg0) -> i32 {
%s = affine.min #map(%ub1, %iv1)[%step]
%casted = arith.index_cast %s : index to i32
%0 = arith.addi %arg1, %casted : i32
scf.yield %0 : i32
}
%1 = arith.addi %arg0, %r1 : i32
scf.yield %1 : i32
}
return %r0 : i32
}
// -----
// CHECK-LABEL: func @regression
func.func @regression(%arg0: memref<i64>, %arg1: index) {
%c0 = arith.constant 0 : index
%0 = affine.apply affine_map<()[s0] -> (s0 * s0)>()[%arg1]
scf.for %arg2 = %c0 to %0 step %arg1 {
%1 = affine.min affine_map<(d0)[s0] -> (s0, -d0 + s0 * s0)>(%arg2)[%arg1]
%2 = arith.index_cast %0 : index to i64
memref.store %2, %arg0[] : memref<i64>
}
return
}
|