1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765
|
// RUN: mlir-opt %s --sparse-tensor-codegen --canonicalize -cse | FileCheck %s
#SV = #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>
#SparseVector = #sparse_tensor.encoding<{
lvlTypes = [ "compressed" ],
crdWidth = 64,
posWidth = 32
}>
#Dense2D = #sparse_tensor.encoding<{
lvlTypes = [ "dense", "dense" ],
crdWidth = 64,
posWidth = 32
}>
#Row = #sparse_tensor.encoding<{
lvlTypes = [ "compressed", "dense" ],
crdWidth = 64,
posWidth = 32
}>
#CSR = #sparse_tensor.encoding<{
lvlTypes = [ "dense", "compressed" ],
crdWidth = 64,
posWidth = 32
}>
#UCSR = #sparse_tensor.encoding<{
lvlTypes = [ "dense", "compressed-no" ]
}>
#CSC = #sparse_tensor.encoding<{
lvlTypes = [ "dense", "compressed" ],
dimToLvl = affine_map<(i, j) -> (j, i)>
}>
#DCSR = #sparse_tensor.encoding<{
lvlTypes = [ "compressed", "compressed" ],
crdWidth = 64,
posWidth = 32
}>
#Dense3D = #sparse_tensor.encoding<{
lvlTypes = [ "dense", "dense", "dense" ],
dimToLvl = affine_map<(i, j, k) -> (k, i, j)>
}>
#Coo = #sparse_tensor.encoding<{
lvlTypes = [ "compressed-nu", "singleton" ]
}>
#CooPNo = #sparse_tensor.encoding<{
lvlTypes = [ "compressed-nu", "singleton-no" ],
dimToLvl = affine_map<(i, j) -> (j, i)>
}>
#ccoo = #sparse_tensor.encoding<{
lvlTypes = [ "compressed", "compressed-nu", "singleton" ]
}>
// CHECK-LABEL: func @sparse_nop(
// CHECK-SAME: %[[A0:.*]]: memref<?xi32>,
// CHECK-SAME: %[[A1:.*]]: memref<?xi64>,
// CHECK-SAME: %[[A2:.*]]: memref<?xf64>,
// CHECK-SAME: %[[A3:.*]]: !sparse_tensor.storage_specifier
// CHECK: return %[[A0]], %[[A1]], %[[A2]], %[[A3]] :
// CHECK-SAME: memref<?xi32>, memref<?xi64>, memref<?xf64>, !sparse_tensor.storage_specifier
func.func @sparse_nop(%arg0: tensor<?xf64, #SparseVector>) -> tensor<?xf64, #SparseVector> {
return %arg0 : tensor<?xf64, #SparseVector>
}
// CHECK-LABEL: func @sparse_nop_multi_ret(
// CHECK-SAME: %[[A0:.*0]]: memref<?xi32>,
// CHECK-SAME: %[[A1:.*1]]: memref<?xi64>,
// CHECK-SAME: %[[A2:.*2]]: memref<?xf64>,
// CHECK-SAME: %[[A3:.*3]]: !sparse_tensor.storage_specifier
// CHECK-SAME: %[[A4:.*4]]: memref<?xi32>,
// CHECK-SAME: %[[A5:.*5]]: memref<?xi64>,
// CHECK-SAME: %[[A6:.*6]]: memref<?xf64>,
// CHECK-SAME: %[[A7:.*7]]: !sparse_tensor.storage_specifier
// CHECK: return %[[A0]], %[[A1]], %[[A2]], %[[A3]], %[[A4]], %[[A5]], %[[A6]], %[[A7]] :
// CHECK-SAME: memref<?xi32>, memref<?xi64>, memref<?xf64>, !sparse_tensor.storage_specifier
// CHECK-SAME: memref<?xi32>, memref<?xi64>, memref<?xf64>, !sparse_tensor.storage_specifier
func.func @sparse_nop_multi_ret(%arg0: tensor<?xf64, #SparseVector>,
%arg1: tensor<?xf64, #SparseVector>) ->
(tensor<?xf64, #SparseVector>, tensor<?xf64, #SparseVector>) {
return %arg0, %arg1 : tensor<?xf64, #SparseVector>, tensor<?xf64, #SparseVector>
}
// CHECK-LABEL: func @sparse_nop_call(
// CHECK-SAME: %[[A0:.*0]]: memref<?xi32>,
// CHECK-SAME: %[[A1:.*1]]: memref<?xi64>,
// CHECK-SAME: %[[A2:.*2]]: memref<?xf64>,
// CHECK-SAME: %[[A3:.*3]]: !sparse_tensor.storage_specifier
// CHECK-SAME: %[[A4:.*4]]: memref<?xi32>,
// CHECK-SAME: %[[A5:.*5]]: memref<?xi64>,
// CHECK-SAME: %[[A6:.*6]]: memref<?xf64>,
// CHECK-SAME: %[[A7:.*7]]: !sparse_tensor.storage_specifier
// CHECK: %[[T:.*]]:8 = call @sparse_nop_multi_ret(%[[A0]], %[[A1]], %[[A2]], %[[A3]], %[[A4]], %[[A5]], %[[A6]], %[[A7]])
// CHECK: return %[[T]]#0, %[[T]]#1, %[[T]]#2, %[[T]]#3, %[[T]]#4, %[[T]]#5, %[[T]]#6, %[[T]]#7 :
// CHECK-SAME: memref<?xi32>, memref<?xi64>, memref<?xf64>, !sparse_tensor.storage_specifier
// CHECK-SAME: memref<?xi32>, memref<?xi64>, memref<?xf64>, !sparse_tensor.storage_specifier
func.func @sparse_nop_call(%arg0: tensor<?xf64, #SparseVector>,
%arg1: tensor<?xf64, #SparseVector>) ->
(tensor<?xf64, #SparseVector>, tensor<?xf64, #SparseVector>) {
%1, %2 = call @sparse_nop_multi_ret(%arg0, %arg1) :
(tensor<?xf64, #SparseVector>, tensor<?xf64, #SparseVector>) ->
(tensor<?xf64, #SparseVector>, tensor<?xf64, #SparseVector>)
return %1, %2: tensor<?xf64, #SparseVector>, tensor<?xf64, #SparseVector>
}
// CHECK-LABEL: func @sparse_nop_cast(
// CHECK-SAME: %[[A0:.*]]: memref<?xi32>,
// CHECK-SAME: %[[A1:.*]]: memref<?xi64>,
// CHECK-SAME: %[[A2:.*]]: memref<?xf32>,
// CHECK-SAME: %[[A3:.*]]: !sparse_tensor.storage_specifier
// CHECK: return %[[A0]], %[[A1]], %[[A2]], %[[A3]] :
func.func @sparse_nop_cast(%arg0: tensor<64xf32, #SparseVector>) -> tensor<?xf32, #SparseVector> {
%0 = tensor.cast %arg0 : tensor<64xf32, #SparseVector> to tensor<?xf32, #SparseVector>
return %0 : tensor<?xf32, #SparseVector>
}
// CHECK-LABEL: func @sparse_nop_cast_3d(
// CHECK-SAME: %[[A0:.*]]: memref<?xf32>,
// CHECK-SAME: %[[A1:.*]]: !sparse_tensor.storage_specifier
// CHECK: return %[[A0]], %[[A1]] :
// CHECK-SAME: memref<?xf32>, !sparse_tensor.storage_specifier
func.func @sparse_nop_cast_3d(%arg0: tensor<10x20x30xf32, #Dense3D>) -> tensor<?x?x?xf32, #Dense3D> {
%0 = tensor.cast %arg0 : tensor<10x20x30xf32, #Dense3D> to tensor<?x?x?xf32, #Dense3D>
return %0 : tensor<?x?x?xf32, #Dense3D>
}
// CHECK-LABEL: func @sparse_dense_2d(
// CHECK-SAME: %[[A0:.*]]: memref<?xf64>,
// CHECK-SAME: %[[A1:.*]]: !sparse_tensor.storage_specifier
// CHECK: return
func.func @sparse_dense_2d(%arg0: tensor<?x?xf64, #Dense2D>) {
return
}
// CHECK-LABEL: func @sparse_row(
// CHECK-SAME: %[[A0:.*]]: memref<?xi32>,
// CHECK-SAME: %[[A1:.*]]: memref<?xi64>,
// CHECK-SAME: %[[A2:.*]]: memref<?xf64>,
// CHECK-SAME: %[[A3:.*]]: !sparse_tensor.storage_specifier
// CHECK: return
func.func @sparse_row(%arg0: tensor<?x?xf64, #Row>) {
return
}
// CHECK-LABEL: func @sparse_csr(
// CHECK-SAME: %[[A0:.*]]: memref<?xi32>,
// CHECK-SAME: %[[A1:.*]]: memref<?xi64>,
// CHECK-SAME: %[[A2:.*]]: memref<?xf64>,
// CHECK-SAME: %[[A3:.*]]: !sparse_tensor.storage_specifier
// CHECK: return
func.func @sparse_csr(%arg0: tensor<?x?xf64, #CSR>) {
return
}
// CHECK-LABEL: func @sparse_dcsr(
// CHECK-SAME: %[[A0:.*0]]: memref<?xi32>,
// CHECK-SAME: %[[A1:.*1]]: memref<?xi64>,
// CHECK-SAME: %[[A2:.*2]]: memref<?xi32>,
// CHECK-SAME: %[[A3:.*3]]: memref<?xi64>,
// CHECK-SAME: %[[A4:.*4]]: memref<?xf64>,
// CHECK-SAME: %[[A5:.*5]]: !sparse_tensor.storage_specifier
// CHECK: return
func.func @sparse_dcsr(%arg0: tensor<?x?xf64, #DCSR>) {
return
}
//
// Querying for dimension 1 in the tensor type can immediately
// fold using the original static dimension sizes.
//
// CHECK-LABEL: func @sparse_dense_3d(
// CHECK-SAME: %[[A0:.*]]: memref<?xf64>,
// CHECK-SAME: %[[A1:.*]]: !sparse_tensor.storage_specifier
// CHECK: %[[C:.*]] = arith.constant 20 : index
// CHECK: return %[[C]] : index
func.func @sparse_dense_3d(%arg0: tensor<10x20x30xf64, #Dense3D>) -> index {
%c = arith.constant 1 : index
%0 = tensor.dim %arg0, %c : tensor<10x20x30xf64, #Dense3D>
return %0 : index
}
//
// Querying for dimension 1 in the tensor type needs to be permuted
// into querying for dimension 2 in the stored sparse tensor scheme,
// since the latter honors the dimToLvl mapping.
//
// CHECK-LABEL: func @sparse_dense_3d_dyn(
// CHECK-SAME: %[[A0:.*]]: memref<?xf64>,
// CHECK-SAME: %[[A1:.*]]: !sparse_tensor.storage_specifier
// CHECK: %[[A2:.*]] = sparse_tensor.storage_specifier.get %[[A1]] lvl_sz at 2
// CHECK: return %[[A2]] : index
func.func @sparse_dense_3d_dyn(%arg0: tensor<?x?x?xf64, #Dense3D>) -> index {
%c = arith.constant 1 : index
%0 = tensor.dim %arg0, %c : tensor<?x?x?xf64, #Dense3D>
return %0 : index
}
// CHECK-LABEL: func @sparse_positions_dcsr(
// CHECK-SAME: %[[A0:.*0]]: memref<?xi32>,
// CHECK-SAME: %[[A1:.*1]]: memref<?xi64>,
// CHECK-SAME: %[[A2:.*2]]: memref<?xi32>,
// CHECK-SAME: %[[A3:.*3]]: memref<?xi64>,
// CHECK-SAME: %[[A4:.*4]]: memref<?xf64>,
// CHECK-SAME: %[[A5:.*5]]: !sparse_tensor.storage_specifier
// CHECK: return %[[A2]] : memref<?xi32>
func.func @sparse_positions_dcsr(%arg0: tensor<?x?xf64, #DCSR>) -> memref<?xi32> {
%0 = sparse_tensor.positions %arg0 { level = 1 : index } : tensor<?x?xf64, #DCSR> to memref<?xi32>
return %0 : memref<?xi32>
}
// CHECK-LABEL: func @sparse_indices_dcsr(
// CHECK-SAME: %[[A0:.*0]]: memref<?xi32>,
// CHECK-SAME: %[[A1:.*1]]: memref<?xi64>,
// CHECK-SAME: %[[A2:.*2]]: memref<?xi32>,
// CHECK-SAME: %[[A3:.*3]]: memref<?xi64>,
// CHECK-SAME: %[[A4:.*4]]: memref<?xf64>,
// CHECK-SAME: %[[A5:.*5]]: !sparse_tensor.storage_specifier
// CHECK: return %[[A3]] : memref<?xi64>
func.func @sparse_indices_dcsr(%arg0: tensor<?x?xf64, #DCSR>) -> memref<?xi64> {
%0 = sparse_tensor.coordinates %arg0 { level = 1 : index } : tensor<?x?xf64, #DCSR> to memref<?xi64>
return %0 : memref<?xi64>
}
// CHECK-LABEL: func @sparse_values_dcsr(
// CHECK-SAME: %[[A0:.*0]]: memref<?xi32>,
// CHECK-SAME: %[[A1:.*1]]: memref<?xi64>,
// CHECK-SAME: %[[A2:.*2]]: memref<?xi32>,
// CHECK-SAME: %[[A3:.*3]]: memref<?xi64>,
// CHECK-SAME: %[[A4:.*4]]: memref<?xf64>,
// CHECK-SAME: %[[A5:.*5]]: !sparse_tensor.storage_specifier
// CHECK: return %[[A4]] : memref<?xf64>
func.func @sparse_values_dcsr(%arg0: tensor<?x?xf64, #DCSR>) -> memref<?xf64> {
%0 = sparse_tensor.values %arg0 : tensor<?x?xf64, #DCSR> to memref<?xf64>
return %0 : memref<?xf64>
}
// CHECK-LABEL: func.func @sparse_values_coo(
// CHECK-SAME: %[[A0:.*0]]: memref<?xindex>,
// CHECK-SAME: %[[A1:.*1]]: memref<?xindex>,
// CHECK-SAME: %[[A2:.*2]]: memref<?xindex>,
// CHECK-SAME: %[[A3:.*3]]: memref<?xindex>,
// CHECK-SAME: %[[A4:.*4]]: memref<?xf64>,
// CHECK-SAME: %[[A5:.*5]]: !sparse_tensor.storage_specifier
// CHECK: return %[[A4]] : memref<?xf64>
func.func @sparse_values_coo(%arg0: tensor<?x?x?xf64, #ccoo>) -> memref<?xf64> {
%0 = sparse_tensor.values %arg0 : tensor<?x?x?xf64, #ccoo> to memref<?xf64>
return %0 : memref<?xf64>
}
// CHECK-LABEL: func.func @sparse_indices_coo(
// CHECK-SAME: %[[A0:.*0]]: memref<?xindex>,
// CHECK-SAME: %[[A1:.*1]]: memref<?xindex>,
// CHECK-SAME: %[[A2:.*2]]: memref<?xindex>,
// CHECK-SAME: %[[A3:.*3]]: memref<?xindex>,
// CHECK-SAME: %[[A4:.*4]]: memref<?xf64>,
// CHECK-SAME: %[[A5:.*5]]: !sparse_tensor.storage_specifier
// CHECK: %[[C2:.*]] = arith.constant 2 : index
// CHECK: %[[S0:.*]] = sparse_tensor.storage_specifier.get %[[A5]] crd_mem_sz at 1
// CHECK: %[[S2:.*]] = arith.divui %[[S0]], %[[C2]] : index
// CHECK: %[[R1:.*]] = memref.subview %[[A3]][0] {{\[}}%[[S2]]] [2] : memref<?xindex> to memref<?xindex, strided<[2]>>
// CHECK: %[[R2:.*]] = memref.cast %[[R1]] : memref<?xindex, strided<[2]>> to memref<?xindex, strided<[?], offset: ?>>
// CHECK: return %[[R2]] : memref<?xindex, strided<[?], offset: ?>>
func.func @sparse_indices_coo(%arg0: tensor<?x?x?xf64, #ccoo>) -> memref<?xindex, strided<[?], offset: ?>> {
%0 = sparse_tensor.coordinates %arg0 { level = 1 : index } : tensor<?x?x?xf64, #ccoo> to memref<?xindex, strided<[?], offset: ?>>
return %0 : memref<?xindex, strided<[?], offset: ?>>
}
// CHECK-LABEL: func.func @sparse_indices_buffer_coo(
// CHECK-SAME: %[[A0:.*0]]: memref<?xindex>,
// CHECK-SAME: %[[A1:.*1]]: memref<?xindex>,
// CHECK-SAME: %[[A2:.*2]]: memref<?xindex>,
// CHECK-SAME: %[[A3:.*3]]: memref<?xindex>,
// CHECK-SAME: %[[A4:.*4]]: memref<?xf64>,
// CHECK-SAME: %[[A5:.*5]]: !sparse_tensor.storage_specifier
// CHECK: return %[[A3]] : memref<?xindex>
func.func @sparse_indices_buffer_coo(%arg0: tensor<?x?x?xf64, #ccoo>) -> memref<?xindex> {
%0 = sparse_tensor.coordinates_buffer %arg0 : tensor<?x?x?xf64, #ccoo> to memref<?xindex>
return %0 : memref<?xindex>
}
// CHECK-LABEL: func @sparse_noe(
// CHECK-SAME: %[[A0:.*]]: memref<?xi32>,
// CHECK-SAME: %[[A1:.*]]: memref<?xi64>,
// CHECK-SAME: %[[A2:.*]]: memref<?xf64>,
// CHECK-SAME: %[[A3:.*]]: !sparse_tensor.storage_specifier
// CHECK: %[[NOE:.*]] = sparse_tensor.storage_specifier.get %[[A3]] val_mem_sz
// CHECK: return %[[NOE]] : index
func.func @sparse_noe(%arg0: tensor<128xf64, #SparseVector>) -> index {
%0 = sparse_tensor.number_of_entries %arg0 : tensor<128xf64, #SparseVector>
return %0 : index
}
// CHECK-LABEL: func @sparse_dealloc_csr(
// CHECK-SAME: %[[A0:.*]]: memref<?xi32>,
// CHECK-SAME: %[[A1:.*]]: memref<?xi64>,
// CHECK-SAME: %[[A2:.*]]: memref<?xf64>,
// CHECK-SAME: %[[A3:.*]]: !sparse_tensor.storage_specifier
// CHECK: memref.dealloc %[[A0]] : memref<?xi32>
// CHECK: memref.dealloc %[[A1]] : memref<?xi64>
// CHECK: memref.dealloc %[[A2]] : memref<?xf64>
// CHECK: return
func.func @sparse_dealloc_csr(%arg0: tensor<?x?xf64, #CSR>) {
bufferization.dealloc_tensor %arg0 : tensor<?x?xf64, #CSR>
return
}
// CHECK-LABEL: func.func @sparse_alloc_csc(
// CHECK-SAME: %[[A0:.*]]: index) -> (memref<?xindex>, memref<?xindex>, memref<?xf64>, !sparse_tensor.storage_specifier
// CHECK-DAG: %[[A1:.*]] = arith.constant 10 : index
// CHECK-DAG: %[[A2:.*]] = arith.constant 0 : index
// CHECK: %[[A3:.*]] = memref.alloc() : memref<16xindex>
// CHECK: %[[A4:.*]] = memref.cast %[[A3]] : memref<16xindex> to memref<?xindex>
// CHECK: %[[A5:.*]] = memref.alloc() : memref<16xindex>
// CHECK: %[[A6:.*]] = memref.cast %[[A5]] : memref<16xindex> to memref<?xindex>
// CHECK: %[[A7:.*]] = memref.alloc() : memref<16xf64>
// CHECK: %[[A8:.*]] = memref.cast %[[A7]] : memref<16xf64> to memref<?xf64>
// CHECK: %[[A9:.*]] = sparse_tensor.storage_specifier.init : !sparse_tensor.storage_specifier
// CHECK: %[[A11:.*]] = sparse_tensor.storage_specifier.set %[[A9]] lvl_sz at 0 with %[[A0]] : !sparse_tensor.storage_specifier
// CHECK: %[[A12:.*]] = sparse_tensor.storage_specifier.set %[[A11]] lvl_sz at 1 with %[[A1]] : !sparse_tensor.storage_specifier
// CHECK: %[[A14:.*]] = sparse_tensor.storage_specifier.get %[[A12]] pos_mem_sz at 1 : !sparse_tensor.storage_specifier
// CHECK: %[[A15:.*]], %[[A17:.*]] = sparse_tensor.push_back %[[A14]], %[[A4]], %[[A2]] : index, memref<?xindex>, index
// CHECK: %[[A18:.*]] = sparse_tensor.storage_specifier.set %[[A12]] pos_mem_sz at 1 with %[[A17]] : !sparse_tensor.storage_specifier
// CHECK: %[[A23:.*]], %[[A25:.*]] = sparse_tensor.push_back %[[A17]], %[[A15]], %[[A2]], %[[A0]] : index, memref<?xindex>, index, index
// CHECK: %[[A26:.*]] = sparse_tensor.storage_specifier.set %[[A18]] pos_mem_sz at 1 with %[[A25]] : !sparse_tensor.storage_specifier
// CHECK: return %[[A23]], %[[A6]], %[[A8]], %[[A26]] : memref<?xindex>, memref<?xindex>, memref<?xf64>, !sparse_tensor.storage_specifier
func.func @sparse_alloc_csc(%arg0: index) -> tensor<10x?xf64, #CSC> {
%0 = bufferization.alloc_tensor(%arg0) : tensor<10x?xf64, #CSC>
%1 = sparse_tensor.load %0 : tensor<10x?xf64, #CSC>
return %1 : tensor<10x?xf64, #CSC>
}
// CHECK-LABEL: func.func @sparse_alloc_3d() -> (memref<?xf64>, !sparse_tensor.storage_specifier
// CHECK-DAG: %[[A0:.*]] = arith.constant 6000 : index
// CHECK-DAG: %[[A1:.*]] = arith.constant 20 : index
// CHECK-DAG: %[[A2:.*]] = arith.constant 10 : index
// CHECK-DAG: %[[A3:.*]] = arith.constant 30 : index
// CHECK-DAG: %[[A4:.*]] = arith.constant 0.000000e+00 : f64
// CHECK: %[[A5:.*]] = memref.alloc() : memref<6000xf64>
// CHECK: %[[A6:.*]] = memref.cast %[[A5]] : memref<6000xf64> to memref<?xf64>
// CHECK: %[[A7:.*]] = sparse_tensor.storage_specifier.init : !sparse_tensor.storage_specifier
// CHECK: %[[A8:.*]] = sparse_tensor.storage_specifier.set %[[A7]] lvl_sz at 0 with %[[A3]] : !sparse_tensor.storage_specifier
// CHECK: %[[A9:.*]] = sparse_tensor.storage_specifier.set %[[A8]] lvl_sz at 1 with %[[A2]] : !sparse_tensor.storage_specifier
// CHECK: %[[A10:.*]] = sparse_tensor.storage_specifier.set %[[A9]] lvl_sz at 2 with %[[A1]] : !sparse_tensor.storage_specifier
// CHECK: %[[A12:.*]] = sparse_tensor.storage_specifier.get %[[A10]] val_mem_sz : !sparse_tensor.storage_specifier
// CHECK: %[[A15:.*]], %[[A14:.*]] = sparse_tensor.push_back %[[A12]], %[[A6]], %[[A4]], %[[A0]] : index, memref<?xf64>, f64, index
// CHECK: %[[A16:.*]] = sparse_tensor.storage_specifier.set %[[A10]] val_mem_sz with %[[A14]] : !sparse_tensor.storage_specifier
// CHECK: return %[[A15]], %[[A16]] : memref<?xf64>, !sparse_tensor.storage_specifier
func.func @sparse_alloc_3d() -> tensor<10x20x30xf64, #Dense3D> {
%0 = bufferization.alloc_tensor() : tensor<10x20x30xf64, #Dense3D>
%1 = sparse_tensor.load %0 : tensor<10x20x30xf64, #Dense3D>
return %1 : tensor<10x20x30xf64, #Dense3D>
}
// CHECK-LABEL: func.func @sparse_alloc_coo_with_size_hint(
// CHECK-SAME: %[[HINT:.*]]: index)
// CHECK: %[[C2:.*]] = arith.constant 2 : index
// CHECK: %[[M2:.*]] = arith.muli %[[HINT]], %c2 : index
// CHECK: %[[A1:.*]] = memref.alloc() : memref<2xindex>
// CHECK: %[[A2:.*]] = memref.alloc(%[[M2]]) : memref<?xindex>
// CHECK: %[[A3:.*]] = memref.alloc(%[[HINT]]) : memref<?xf64>
func.func @sparse_alloc_coo_with_size_hint(%arg0: index) -> tensor<10x20xf64, #Coo> {
%0 = bufferization.alloc_tensor() size_hint=%arg0 : tensor<10x20xf64, #Coo>
%1 = sparse_tensor.load %0 : tensor<10x20xf64, #Coo>
return %1 : tensor<10x20xf64, #Coo>
}
// CHECK-LABEL: func.func @sparse_expansion1()
// CHECK: %[[A:.*]] = memref.alloc() : memref<8xf64>
// CHECK: %[[B:.*]] = memref.alloc() : memref<8xi1>
// CHECK: %[[C:.*]] = memref.alloc() : memref<8xindex>
// CHECK: %[[D:.*]] = memref.cast %[[C]] : memref<8xindex> to memref<?xindex>
// CHECK-DAG: linalg.fill ins(%{{.*}} : f64) outs(%[[A]] : memref<8xf64>)
// CHECK-DAG: linalg.fill ins(%{{.*}} : i1) outs(%[[B]] : memref<8xi1>)
// CHECK: return %[[D]] : memref<?xindex>
func.func @sparse_expansion1() -> memref<?xindex> {
%0 = bufferization.alloc_tensor() : tensor<4x8xf64, #CSR>
%values, %filled, %added, %count = sparse_tensor.expand %0
: tensor<4x8xf64, #CSR> to memref<?xf64>, memref<?xi1>, memref<?xindex>
return %added : memref<?xindex>
}
// CHECK-LABEL: func.func @sparse_expansion2()
// CHECK: %[[A:.*]] = memref.alloc() : memref<4xf64>
// CHECK: %[[B:.*]] = memref.alloc() : memref<4xi1>
// CHECK: %[[C:.*]] = memref.alloc() : memref<4xindex>
// CHECK: %[[D:.*]] = memref.cast %[[C]] : memref<4xindex> to memref<?xindex>
// CHECK-DAG: linalg.fill ins(%{{.*}} : f64) outs(%[[A]] : memref<4xf64>)
// CHECK-DAG: linalg.fill ins(%{{.*}} : i1) outs(%[[B]] : memref<4xi1>)
// CHECK: return %[[D]] : memref<?xindex>
func.func @sparse_expansion2() -> memref<?xindex> {
%0 = bufferization.alloc_tensor() : tensor<4x8xf64, #CSC>
%values, %filled, %added, %count = sparse_tensor.expand %0
: tensor<4x8xf64, #CSC> to memref<?xf64>, memref<?xi1>, memref<?xindex>
return %added : memref<?xindex>
}
// CHECK-LABEL: func.func @sparse_expansion3(
// CHECK-SAME: %[[D0:.*]]: index,
// CHECK-SAME: %{{.*}}: index) -> memref<?xindex> {
// CHECK: %[[V:.*]] = memref.alloc(%[[D0]]) : memref<?xf64>
// CHECK: %[[B:.*]] = memref.alloc(%[[D0]]) : memref<?xi1>
// CHECK: %[[D:.*]] = memref.alloc(%[[D0]]) : memref<?xindex>
// CHECK: linalg.fill ins(%{{.*}} : f64) outs(%[[V]] : memref<?xf64>)
// CHECK: linalg.fill ins(%{{.*}} : i1) outs(%[[B]] : memref<?xi1>)
// CHECK: return %[[D]] : memref<?xindex>
func.func @sparse_expansion3(%arg0: index, %arg1: index) -> memref<?xindex> {
%0 = bufferization.alloc_tensor(%arg0, %arg1) : tensor<?x?xf64, #CSC>
%values, %filled, %added, %count = sparse_tensor.expand %0
: tensor<?x?xf64, #CSC> to memref<?xf64>, memref<?xi1>, memref<?xindex>
return %added : memref<?xindex>
}
// CHECK-LABEL: func.func private @_insert_compressed_100_f64_0_0(
// CHECK-SAME: %[[A1:.*0]]: memref<?xindex>,
// CHECK-SAME: %[[A2:.*1]]: memref<?xindex>,
// CHECK-SAME: %[[A3:.*2]]: memref<?xf64>,
// CHECK-SAME: %[[A4:.*3]]: !sparse_tensor.storage_specifier
// CHECK-SAME: %[[A5:.*4]]: index,
// CHECK-SAME: %[[A6:.*5]]: f64)
//
// CHECK-LABEL: func.func @sparse_compression_1d(
// CHECK-SAME: %[[A0:.*0]]: memref<?xindex>,
// CHECK-SAME: %[[A1:.*1]]: memref<?xindex>,
// CHECK-SAME: %[[A2:.*2]]: memref<?xf64>,
// CHECK-SAME: %[[A3:.*3]]: !sparse_tensor.storage_specifier
// CHECK-SAME: %[[A4:.*4]]: memref<?xf64>,
// CHECK-SAME: %[[A5:.*5]]: memref<?xi1>,
// CHECK-SAME: %[[A6:.*6]]: memref<?xindex>,
// CHECK-SAME: %[[A7:.*7]]: index) -> (memref<?xindex>, memref<?xindex>, memref<?xf64>, !sparse_tensor.storage_specifier
// CHECK-DAG: %[[A8:.*]] = arith.constant false
// CHECK-DAG: %[[A9:.*]] = arith.constant 0.000000e+00 : f64
// CHECK-DAG: %[[A10:.*]] = arith.constant 1 : index
// CHECK-DAG: %[[A11:.*]] = arith.constant 0 : index
// CHECK: sparse_tensor.sort hybrid_quick_sort %[[A7]], %[[A6]] : memref<?xindex>
// CHECK: %[[A12:.*]]:4 = scf.for %[[A13:.*]] = %[[A11]] to %[[A7]] step %[[A10]] iter_args(%[[A14:.*]] = %[[A0]], %[[A15:.*]] = %[[A1]], %[[A16:.*]] = %[[A2]], %[[A17:.*]] = %[[A3]])
// CHECK: %[[A18:.*]] = memref.load %[[A6]]{{\[}}%[[A13]]] : memref<?xindex>
// CHECK: %[[A19:.*]] = memref.load %[[A4]]{{\[}}%[[A18]]] : memref<?xf64>
// CHECK: %[[A20:.*]]:4 = func.call @_insert_compressed_100_f64_0_0(%[[A14]], %[[A15]], %[[A16]], %[[A17]], %[[A18]], %[[A19]])
// CHECK: memref.store %[[A9]], %[[A4]]{{\[}}%[[A18]]] : memref<?xf64>
// CHECK: memref.store %[[A8]], %[[A5]]{{\[}}%[[A18]]] : memref<?xi1>
// CHECK: scf.yield %[[A20]]#0, %[[A20]]#1, %[[A20]]#2, %[[A20]]#3
// CHECK: }
// CHECK: memref.dealloc %[[A4]] : memref<?xf64>
// CHECK: memref.dealloc %[[A5]] : memref<?xi1>
// CHECK: memref.dealloc %[[A6]] : memref<?xindex>
// CHECK: return %[[A21:.*]]#0, %[[A21]]#1, %[[A21]]#2, %[[A21]]#3 : memref<?xindex>, memref<?xindex>, memref<?xf64>, !sparse_tensor.storage_specifier
func.func @sparse_compression_1d(%tensor: tensor<100xf64, #SV>,
%values: memref<?xf64>,
%filled: memref<?xi1>,
%added: memref<?xindex>,
%count: index) -> tensor<100xf64, #SV> {
%0 = sparse_tensor.compress %values, %filled, %added, %count into %tensor[]
: memref<?xf64>, memref<?xi1>, memref<?xindex>, tensor<100xf64, #SV>
%1 = sparse_tensor.load %0 hasInserts : tensor<100xf64, #SV>
return %1 : tensor<100xf64, #SV>
}
// CHECK-LABEL: func.func private @_insert_dense_compressed_8_8_f64_64_32(
// CHECK-SAME: %[[A1:.*0]]: memref<?xi32>,
// CHECK-SAME: %[[A2:.*1]]: memref<?xi64>,
// CHECK-SAME: %[[A3:.*2]]: memref<?xf64>,
// CHECK-SAME: %[[A4:.*3]]: !sparse_tensor.storage_specifier
// CHECK-SAME: %[[A5:.*4]]: index,
// CHECK-SAME: %[[A6:.*5]]: index,
// CHECK-SAME: %[[A7:.*6]]: f64)
//
// CHECK-LABEL: func.func @sparse_compression(
// CHECK-SAME: %[[A0:.*0]]: memref<?xi32>,
// CHECK-SAME: %[[A1:.*1]]: memref<?xi64>,
// CHECK-SAME: %[[A2:.*2]]: memref<?xf64>,
// CHECK-SAME: %[[A3:.*3]]: !sparse_tensor.storage_specifier
// CHECK-SAME: %[[A4:.*4]]: memref<?xf64>,
// CHECK-SAME: %[[A5:.*5]]: memref<?xi1>,
// CHECK-SAME: %[[A6:.*6]]: memref<?xindex>,
// CHECK-SAME: %[[A7:.*7]]: index,
// CHECK-SAME: %[[A8:.*8]]: index) -> (memref<?xi32>, memref<?xi64>, memref<?xf64>, !sparse_tensor.storage_specifier
// CHECK: %[[A9:.*]] = arith.constant 0 : i32
// CHECK: %[[A10:.*]] = arith.constant false
// CHECK: %[[A11:.*]] = arith.constant 0.000000e+00 : f64
// CHECK: %[[A12:.*]] = arith.constant 1 : index
// CHECK: %[[A13:.*]] = arith.constant 0 : index
// CHECK: sparse_tensor.sort hybrid_quick_sort %[[A7]], %[[A6]] : memref<?xindex>
// CHECK: %[[A14:.*]]:4 = scf.for %[[A15:.*]] = %[[A13]] to %[[A7]] step %[[A12]] iter_args(%[[A16:.*]] = %[[A0]], %[[A17:.*]] = %[[A1]], %[[A18:.*]] = %[[A2]], %[[A19:.*]] = %[[A3]]) -> (memref<?xi32>, memref<?xi64>, memref<?xf64>, !sparse_tensor.storage_specifier
// CHECK: %[[A20:.*]] = memref.load %[[A6]]{{\[}}%[[A15]]] : memref<?xindex>
// CHECK: %[[A21:.*]] = memref.load %[[A4]]{{\[}}%[[A20]]] : memref<?xf64>
// CHECK: %[[A22:.*]]:4 = func.call @_insert_dense_compressed_8_8_f64_64_32(%[[A16]], %[[A17]], %[[A18]], %[[A19]], %[[A8]], %[[A20]], %[[A21]]) : (memref<?xi32>, memref<?xi64>, memref<?xf64>, !sparse_tensor.storage_specifier
// CHECK: memref.store %[[A11]], %[[A4]]{{\[}}%[[A20]]] : memref<?xf64>
// CHECK: memref.store %[[A10]], %[[A5]]{{\[}}%[[A20]]] : memref<?xi1>
// CHECK: scf.yield %[[A22]]#0, %[[A22]]#1, %[[A22]]#2, %[[A22]]#3 : memref<?xi32>, memref<?xi64>, memref<?xf64>, !sparse_tensor.storage_specifier
// CHECK: }
// CHECK: memref.dealloc %[[A4]] : memref<?xf64>
// CHECK: memref.dealloc %[[A5]] : memref<?xi1>
// CHECK: memref.dealloc %[[A6]] : memref<?xindex>
// CHECK: %[[A25:.*]] = sparse_tensor.storage_specifier.get %[[A24:.*]]#3 pos_mem_sz at 1 : !sparse_tensor.storage_specifier
// CHECK: %[[A26:.*]] = memref.load %[[A24]]#0{{\[}}%[[A13]]] : memref<?xi32>
// CHECK: %[[A27:.*]] = scf.for %[[A28:.*]] = %[[A12]] to %[[A25]] step %[[A12]] iter_args(%[[A29:.*]] = %[[A26]]) -> (i32) {
// CHECK: %[[A30:.*]] = memref.load %[[A24]]#0{{\[}}%[[A28]]] : memref<?xi32>
// CHECK: %[[A31:.*]] = arith.cmpi eq, %[[A30]], %[[A9]] : i32
// CHECK: %[[A32:.*]] = arith.select %[[A31]], %[[A29]], %[[A30]] : i32
// CHECK: scf.if %[[A31]] {
// CHECK: memref.store %[[A29]], %[[A24]]#0{{\[}}%[[A28]]] : memref<?xi32>
// CHECK: }
// CHECK: scf.yield %[[A32]] : i32
// CHECK: }
// CHECK: return %[[A24]]#0, %[[A24]]#1, %[[A24]]#2, %[[A24]]#3 : memref<?xi32>, memref<?xi64>, memref<?xf64>, !sparse_tensor.storage_specifier
func.func @sparse_compression(%tensor: tensor<8x8xf64, #CSR>,
%values: memref<?xf64>,
%filled: memref<?xi1>,
%added: memref<?xindex>,
%count: index,
%i: index) -> tensor<8x8xf64, #CSR> {
%0 = sparse_tensor.compress %values, %filled, %added, %count into %tensor[%i]
: memref<?xf64>, memref<?xi1>, memref<?xindex>, tensor<8x8xf64, #CSR>
%1 = sparse_tensor.load %0 hasInserts : tensor<8x8xf64, #CSR>
return %1 : tensor<8x8xf64, #CSR>
}
// CHECK-LABEL: func.func private @"_insert_dense_compressed-no_8_8_f64_0_0"(
// CHECK-SAME: %[[A1:.*0]]: memref<?xindex>,
// CHECK-SAME: %[[A2:.*1]]: memref<?xindex>,
// CHECK-SAME: %[[A3:.*2]]: memref<?xf64>,
// CHECK-SAME: %[[A4:.*3]]: !sparse_tensor.storage_specifier
// CHECK-SAME: %[[A5:.*4]]: index,
// CHECK-SAME: %[[A6:.*5]]: index,
// CHECK-SAME: %[[A7:.*6]]: f64)
//
// CHECK-LABEL: func.func @sparse_compression_unordered(
// CHECK-SAME: %[[A0:.*0]]: memref<?xindex>,
// CHECK-SAME: %[[A1:.*1]]: memref<?xindex>,
// CHECK-SAME: %[[A2:.*2]]: memref<?xf64>,
// CHECK-SAME: %[[A3:.*3]]: !sparse_tensor.storage_specifier
// CHECK-SAME: %[[A4:.*4]]: memref<?xf64>,
// CHECK-SAME: %[[A5:.*5]]: memref<?xi1>,
// CHECK-SAME: %[[A6:.*6]]: memref<?xindex>,
// CHECK-SAME: %[[A7:.*7]]: index,
// CHECK-SAME: %[[A8:.*8]]: index) -> (memref<?xindex>, memref<?xindex>, memref<?xf64>, !sparse_tensor.storage_specifier
// CHECK: %[[A9:.*]] = arith.constant false
// CHECK: %[[A10:.*]] = arith.constant 0.000000e+00 : f64
// CHECK: %[[A11:.*]] = arith.constant 0 : index
// CHECK: %[[A12:.*]] = arith.constant 1 : index
// CHECK: %[[A13:.*]]:4 = scf.for %[[A14:.*]] = %[[A11]] to %[[A7]] step %[[A12]] iter_args(%[[A15:.*]] = %[[A0]], %[[A16:.*]] = %[[A1]], %[[A17:.*]] = %[[A2]], %[[A18:.*]] = %[[A3]]) -> (memref<?xindex>, memref<?xindex>, memref<?xf64>, !sparse_tensor.storage_specifier
// CHECK: %[[A19:.*]] = memref.load %[[A6]]{{\[}}%[[A14]]] : memref<?xindex>
// CHECK: %[[A20:.*]] = memref.load %[[A4]]{{\[}}%[[A19]]] : memref<?xf64>
// CHECK: %[[A21:.*]]:4 = func.call @"_insert_dense_compressed-no_8_8_f64_0_0"(%[[A15]], %[[A16]], %[[A17]], %[[A18]], %[[A8]], %[[A19]], %[[A20]]) : (memref<?xindex>, memref<?xindex>, memref<?xf64>, !sparse_tensor.storage_specifier
// CHECK: memref.store %[[A10]], %[[A4]]{{\[}}%[[A19]]] : memref<?xf64>
// CHECK: memref.store %[[A9]], %[[A5]]{{\[}}%[[A19]]] : memref<?xi1>
// CHECK: scf.yield %[[A21]]#0, %[[A21]]#1, %[[A21]]#2, %[[A21]]#3 : memref<?xindex>, memref<?xindex>, memref<?xf64>, !sparse_tensor.storage_specifier
// CHECK: }
// CHECK: memref.dealloc %[[A4]] : memref<?xf64>
// CHECK: memref.dealloc %[[A5]] : memref<?xi1>
// CHECK: memref.dealloc %[[A6]] : memref<?xindex>
// CHECK: %[[A24:.*]] = sparse_tensor.storage_specifier.get %[[A23:.*]]#3 pos_mem_sz at 1 : !sparse_tensor.storage_specifier
// CHECK: %[[A25:.*]] = memref.load %[[A23]]#0{{\[}}%[[A11]]] : memref<?xindex>
// CHECK: %[[A26:.*]] = scf.for %[[A27:.*]] = %[[A12]] to %[[A24]] step %[[A12]] iter_args(%[[A28:.*]] = %[[A25]]) -> (index) {
// CHECK: %[[A29:.*]] = memref.load %[[A23]]#0{{\[}}%[[A27]]] : memref<?xindex>
// CHECK: %[[A30:.*]] = arith.cmpi eq, %[[A29]], %[[A11]] : index
// CHECK: %[[A31:.*]] = arith.select %[[A30]], %[[A28]], %[[A29]] : index
// CHECK: scf.if %[[A30]] {
// CHECK: memref.store %[[A28]], %[[A23]]#0{{\[}}%[[A27]]] : memref<?xindex>
// CHECK: }
// CHECK: scf.yield %[[A31]] : index
// CHECK: }
// CHECK: return %[[A23]]#0, %[[A23]]#1, %[[A23]]#2, %[[A23]]#3 : memref<?xindex>, memref<?xindex>, memref<?xf64>, !sparse_tensor.storage_specifier
func.func @sparse_compression_unordered(%tensor: tensor<8x8xf64, #UCSR>,
%values: memref<?xf64>,
%filled: memref<?xi1>,
%added: memref<?xindex>,
%count: index,
%i: index) -> tensor<8x8xf64, #UCSR> {
%0 = sparse_tensor.compress %values, %filled, %added, %count into %tensor[%i]
: memref<?xf64>, memref<?xi1>, memref<?xindex>, tensor<8x8xf64, #UCSR>
%1 = sparse_tensor.load %0 hasInserts : tensor<8x8xf64, #UCSR>
return %1 : tensor<8x8xf64, #UCSR>
}
// CHECK-LABEL: func.func private @_insert_compressed_128_f64_0_0(
// CHECK-SAME: %[[A1:.*0]]: memref<?xindex>,
// CHECK-SAME: %[[A2:.*1]]: memref<?xindex>,
// CHECK-SAME: %[[A3:.*2]]: memref<?xf64>,
// CHECK-SAME: %[[A4:.*3]]: !sparse_tensor.storage_specifier
// CHECK-SAME: %[[A5:.*4]]: index,
// CHECK-SAME: %[[A6:.*5]]: f64)
//
// CHECK-LABEL: func @sparse_insert(
// CHECK-SAME: %[[A1:.*0]]: memref<?xindex>,
// CHECK-SAME: %[[A2:.*1]]: memref<?xindex>,
// CHECK-SAME: %[[A3:.*2]]: memref<?xf64>,
// CHECK-SAME: %[[A4:.*3]]: !sparse_tensor.storage_specifier
// CHECK-SAME: %[[A5:.*4]]: index,
// CHECK-SAME: %[[A6:.*5]]: f64)
// CHECK: %[[R:.*]]:4 = call @_insert_compressed_128_f64_0_0(%[[A1]], %[[A2]], %[[A3]], %[[A4]], %[[A5]], %[[A6]])
// CHECK: return %[[R]]#0, %[[R]]#1, %[[R]]#2, %[[R]]#3
func.func @sparse_insert(%arg0: tensor<128xf64, #SV>, %arg1: index, %arg2: f64) -> tensor<128xf64, #SV> {
%0 = sparse_tensor.insert %arg2 into %arg0[%arg1] : tensor<128xf64, #SV>
%1 = sparse_tensor.load %0 hasInserts : tensor<128xf64, #SV>
return %1 : tensor<128xf64, #SV>
}
// CHECK-LABEL: func.func private @_insert_compressed_128_f64_64_32(
// CHECK-SAME: %[[A1:.*]]: memref<?xi32>,
// CHECK-SAME: %[[A2:.*]]: memref<?xi64>,
// CHECK-SAME: %[[A3:.*]]: memref<?xf64>,
// CHECK-SAME: %[[A4:.*]]: !sparse_tensor.storage_specifier
// CHECK-SAME: %[[A5:.*]]: index,
// CHECK-SAME: %[[A6:.*]]: f64)
//
// CHECK-LABEL: func @sparse_insert_typed(
// CHECK-SAME: %[[A1:.*]]: memref<?xi32>,
// CHECK-SAME: %[[A2:.*]]: memref<?xi64>,
// CHECK-SAME: %[[A3:.*]]: memref<?xf64>,
// CHECK-SAME: %[[A4:.*]]: !sparse_tensor.storage_specifier
// CHECK-SAME: %[[A5:.*]]: index,
// CHECK-SAME: %[[A6:.*]]: f64)
// CHECK: %[[R:.*]]:4 = call @_insert_compressed_128_f64_64_32(%[[A1]], %[[A2]], %[[A3]], %[[A4]], %[[A5]], %[[A6]])
// CHECK: return %[[R]]#0, %[[R]]#1, %[[R]]#2, %[[R]]#3
func.func @sparse_insert_typed(%arg0: tensor<128xf64, #SparseVector>, %arg1: index, %arg2: f64) -> tensor<128xf64, #SparseVector> {
%0 = sparse_tensor.insert %arg2 into %arg0[%arg1] : tensor<128xf64, #SparseVector>
%1 = sparse_tensor.load %0 hasInserts : tensor<128xf64, #SparseVector>
return %1 : tensor<128xf64, #SparseVector>
}
// CHECK-LABEL: func.func private @"_insert_compressed-nu_singleton_5_6_f64_0_0"(
// CHECK-SAME: %[[A1:.*0]]: memref<?xindex>,
// CHECK-SAME: %[[A2:.*1]]: memref<?xindex>,
// CHECK-SAME: %[[A3:.*2]]: memref<?xf64>,
// CHECK-SAME: %[[A4:.*3]]: !sparse_tensor.storage_specifier
// CHECK-SAME: %[[A5:.*4]]: index,
// CHECK-SAME: %[[A5:.*5]]: index,
// CHECK-SAME: %[[A7:.*6]]: f64)
//
// CHECK-LABEL: func.func @sparse_insert_coo(
// CHECK-SAME: %[[A0:.*0]]: memref<?xindex>,
// CHECK-SAME: %[[A1:.*1]]: memref<?xindex>,
// CHECK-SAME: %[[A2:.*2]]: memref<?xf64>,
// CHECK-SAME: %[[A3:.*3]]: !sparse_tensor.storage_specifier
// CHECK-SAME: %[[A4:.*4]]: index,
// CHECK-SAME: %[[A5:.*5]]: f64)
// CHECK: %[[R:.*]]:4 = call @"_insert_compressed-nu_singleton_5_6_f64_0_0"(%[[A0]], %[[A1]], %[[A2]], %[[A3]], %[[A4]], %[[A4]], %[[A5]])
// CHECK: return %[[R]]#0, %[[R]]#1, %[[R]]#2, %[[R]]#3
func.func @sparse_insert_coo(%arg0: tensor<5x6xf64, #Coo>, %arg1: index, %arg2: f64) -> tensor<5x6xf64, #Coo> {
%0 = sparse_tensor.insert %arg2 into %arg0[%arg1, %arg1] : tensor<5x6xf64, #Coo>
%1 = sparse_tensor.load %0 hasInserts : tensor<5x6xf64, #Coo>
return %1 : tensor<5x6xf64, #Coo>
}
// CHECK-LABEL: func.func @sparse_nop_convert(
// CHECK-SAME: %[[A1:.*]]: memref<?xi32>,
// CHECK-SAME: %[[A2:.*]]: memref<?xi64>,
// CHECK-SAME: %[[A3:.*]]: memref<?xf32>,
// CHECK-SAME: %[[A4:.*]]: !sparse_tensor.storage_specifier
// CHECK: return %[[A1]], %[[A2]], %[[A3]], %[[A4]] :
// CHECK-SAME: memref<?xi32>, memref<?xi64>, memref<?xf32>, !sparse_tensor.storage_specifier
func.func @sparse_nop_convert(%arg0: tensor<32xf32, #SparseVector>) -> tensor<?xf32, #SparseVector> {
%0 = sparse_tensor.convert %arg0 : tensor<32xf32, #SparseVector> to tensor<?xf32, #SparseVector>
return %0 : tensor<?xf32, #SparseVector>
}
// CHECK-LABEL: func.func @sparse_convert_element_type(
// CHECK-SAME: %[[A1:.*]]: memref<?xi32>,
// CHECK-SAME: %[[A2:.*]]: memref<?xi64>,
// CHECK-SAME: %[[A3:.*]]: memref<?xf32>,
// CHECK-SAME: %[[A4:.*]]: !sparse_tensor.storage_specifier
// CHECK: scf.for
// CHECK: %[[FValue:.*]] = memref.load
// CHECK: %[[IValue:.*]] = arith.fptosi %[[FValue]]
// CHECK: memref.store %[[IValue]]
// CHECK: return %{{.*}}, %{{.*}}, %{{.*}}, %[[A4]] :
// CHECK-SAME: memref<?xi32>, memref<?xi64>, memref<?xi32>, !sparse_tensor.storage_specifier
func.func @sparse_convert_element_type(%arg0: tensor<32xf32, #SparseVector>) -> tensor<?xi32, #SparseVector> {
%0 = sparse_tensor.convert %arg0 : tensor<32xf32, #SparseVector> to tensor<?xi32, #SparseVector>
return %0 : tensor<?xi32, #SparseVector>
}
// CHECK-LABEL: func.func @sparse_new_coo(
// CHECK-SAME: %[[A0:.*]]: !llvm.ptr<i8>) -> (memref<?xindex>, memref<?xindex>, memref<?xf32>, !sparse_tensor.storage_specifier<#sparse_tensor.encoding<{ lvlTypes = [ "compressed", "singleton" ] }>>) {
// CHECK-DAG: %[[A1:.*]] = arith.constant false
// CHECK-DAG: %[[A2:.*]] = arith.constant 1 : index
// CHECK-DAG: %[[A3:.*]] = arith.constant 0 : index
// CHECK-DAG: %[[A4:.*]] = arith.constant 2 : index
// CHECK: %[[A5:.*]] = call @createSparseTensorReader(%[[A0]])
// CHECK: %[[A6:.*]] = memref.alloca() : memref<2xindex>
// CHECK: %[[A7:.*]] = memref.cast %[[A6]] : memref<2xindex> to memref<?xindex>
// CHECK: call @copySparseTensorReaderDimSizes(%[[A5]], %[[A7]]) : (!llvm.ptr<i8>, memref<?xindex>) -> ()
// CHECK: %[[A8:.*]] = memref.load %[[A6]]{{\[}}%[[A3]]] : memref<2xindex>
// CHECK: %[[A9:.*]] = memref.load %[[A6]]{{\[}}%[[A2]]] : memref<2xindex>
// CHECK: %[[A10:.*]] = call @getSparseTensorReaderNSE(%[[A5]])
// CHECK: %[[A11:.*]] = arith.muli %[[A10]], %[[A4]] : index
// CHECK: %[[A12:.*]] = memref.alloc() : memref<2xindex>
// CHECK: %[[A13:.*]] = memref.cast %[[A12]] : memref<2xindex> to memref<?xindex>
// CHECK: %[[A14:.*]] = memref.alloc(%[[A11]]) : memref<?xindex>
// CHECK: %[[A15:.*]] = memref.alloc(%[[A10]]) : memref<?xf32>
// CHECK: %[[A16:.*]] = sparse_tensor.storage_specifier.init : !sparse_tensor.storage_specifier<#sparse_tensor.encoding<{ lvlTypes = [ "compressed", "singleton" ] }>>
// CHECK: %[[A18:.*]] = sparse_tensor.storage_specifier.set %[[A16]] lvl_sz at 0 with %[[A8]]
// CHECK: %[[A19:.*]] = sparse_tensor.storage_specifier.get %[[A18]] pos_mem_sz at 0
// CHECK: %[[A21:.*]], %[[A22:.*]] = sparse_tensor.push_back %[[A19]], %[[A13]], %[[A3]]
// CHECK: %[[A24:.*]] = sparse_tensor.storage_specifier.set %[[A18]] pos_mem_sz at 0 with %[[A22]]
// CHECK: %[[A26:.*]] = sparse_tensor.storage_specifier.set %[[A24]] lvl_sz at 1 with %[[A9]]
// CHECK: %[[A27:.*]], %[[A28:.*]] = sparse_tensor.push_back %[[A22]], %[[A21]], %[[A3]], %[[A2]]
// CHECK: %[[A30:.*]] = sparse_tensor.storage_specifier.set %[[A26]] pos_mem_sz at 0 with %[[A28]]
// CHECK: %[[A31:.*]] = memref.alloca() : memref<2xindex>
// CHECK: %[[A32:.*]] = memref.cast %[[A31]] : memref<2xindex> to memref<?xindex>
// CHECK: memref.store %[[A3]], %[[A31]]{{\[}}%[[A3]]] : memref<2xindex>
// CHECK: memref.store %[[A2]], %[[A31]]{{\[}}%[[A2]]] : memref<2xindex>
// CHECK: %[[A33:.*]] = call @getSparseTensorReaderRead0F32(%[[A5]], %[[A32]], %[[A14]], %[[A15]])
// CHECK: %[[A34:.*]] = arith.cmpi eq, %[[A33]], %[[A1]] : i1
// CHECK: scf.if %[[A34]] {
// CHECK: sparse_tensor.sort_coo hybrid_quick_sort %[[A10]], %[[A14]] jointly %[[A15]] {nx = 2 : index, ny = 0 : index} : memref<?xindex> jointly memref<?xf32>
// CHECK: }
// CHECK: memref.store %[[A10]], %[[A27]]{{\[}}%[[A2]]] : memref<?xindex>
// CHECK: %[[A36:.*]] = sparse_tensor.storage_specifier.set %[[A30]] crd_mem_sz at 0 with %[[A11]]
// CHECK: %[[A38:.*]] = sparse_tensor.storage_specifier.set %[[A36]] val_mem_sz with %[[A10]]
// CHECK: call @delSparseTensorReader(%[[A5]]) : (!llvm.ptr<i8>) -> ()
// CHECK: return %[[A27]], %[[A14]], %[[A15]], %[[A38]]
func.func @sparse_new_coo(%arg0: !llvm.ptr<i8>) -> tensor<?x?xf32, #Coo> {
%0 = sparse_tensor.new %arg0 : !llvm.ptr<i8> to tensor<?x?xf32, #Coo>
return %0 : tensor<?x?xf32, #Coo>
}
// CHECK-LABEL: func.func @sparse_new_coo_permute_no(
// CHECK-SAME: %[[A0:.*]]: !llvm.ptr<i8>) -> (memref<?xindex>, memref<?xindex>, memref<?xf32>, !sparse_tensor.storage_specifier<#sparse_tensor.encoding<{ lvlTypes = [ "compressed", "singleton" ] }>>) {
// CHECK-DAG: %[[A1:.*]] = arith.constant 1 : index
// CHECK-DAG: %[[A2:.*]] = arith.constant 0 : index
// CHECK-DAG: %[[A3:.*]] = arith.constant 2 : index
// CHECK: %[[A4:.*]] = call @createSparseTensorReader(%[[A0]])
// CHECK: %[[A5:.*]] = memref.alloca() : memref<2xindex>
// CHECK: %[[A6:.*]] = memref.cast %[[A5]] : memref<2xindex> to memref<?xindex>
// CHECK: call @copySparseTensorReaderDimSizes(%[[A4]], %[[A6]])
// CHECK: %[[A7:.*]] = memref.load %[[A5]]{{\[}}%[[A2]]] : memref<2xindex>
// CHECK: %[[A8:.*]] = memref.load %[[A5]]{{\[}}%[[A1]]] : memref<2xindex>
// CHECK: %[[A9:.*]] = call @getSparseTensorReaderNSE(%[[A4]])
// CHECK: %[[A10:.*]] = arith.muli %[[A9]], %[[A3]] : index
// CHECK: %[[A11:.*]] = memref.alloc() : memref<2xindex>
// CHECK: %[[A12:.*]] = memref.cast %[[A11]] : memref<2xindex> to memref<?xindex>
// CHECK: %[[A13:.*]] = memref.alloc(%[[A10]]) : memref<?xindex>
// CHECK: %[[A14:.*]] = memref.alloc(%[[A9]]) : memref<?xf32>
// CHECK: %[[A15:.*]] = sparse_tensor.storage_specifier.init : !sparse_tensor.storage_specifier<#sparse_tensor.encoding<{ lvlTypes = [ "compressed", "singleton" ] }>>
// CHECK: %[[A17:.*]] = sparse_tensor.storage_specifier.set %[[A15]] lvl_sz at 0 with %[[A8]]
// CHECK: %[[A18:.*]] = sparse_tensor.storage_specifier.get %[[A17]] pos_mem_sz at 0
// CHECK: %[[A20:.*]], %[[A21:.*]] = sparse_tensor.push_back %[[A18]], %[[A12]], %[[A2]]
// CHECK: %[[A23:.*]] = sparse_tensor.storage_specifier.set %[[A17]] pos_mem_sz at 0 with %[[A21]]
// CHECK: %[[A25:.*]] = sparse_tensor.storage_specifier.set %[[A23]] lvl_sz at 1 with %[[A7]]
// CHECK: %[[A26:.*]], %[[A27:.*]] = sparse_tensor.push_back %[[A21]], %[[A20]], %[[A2]], %[[A1]]
// CHECK: %[[A29:.*]] = sparse_tensor.storage_specifier.set %[[A25]] pos_mem_sz at 0 with %[[A27]]
// CHECK: %[[A30:.*]] = memref.alloca() : memref<2xindex>
// CHECK: %[[A31:.*]] = memref.cast %[[A30]] : memref<2xindex> to memref<?xindex>
// CHECK: memref.store %[[A1]], %[[A30]]{{\[}}%[[A2]]] : memref<2xindex>
// CHECK: memref.store %[[A2]], %[[A30]]{{\[}}%[[A1]]] : memref<2xindex>
// CHECK: %[[A32:.*]] = call @getSparseTensorReaderRead0F32(%[[A4]], %[[A31]], %[[A13]], %[[A14]])
// CHECK: memref.store %[[A9]], %[[A26]]{{\[}}%[[A1]]] : memref<?xindex>
// CHECK: %[[A34:.*]] = sparse_tensor.storage_specifier.set %[[A29]] crd_mem_sz at 0 with %[[A10]]
// CHECK: %[[A36:.*]] = sparse_tensor.storage_specifier.set %[[A34]] val_mem_sz with %[[A9]]
// CHECK: call @delSparseTensorReader(%[[A4]]) : (!llvm.ptr<i8>) -> ()
// CHECK: return %[[A26]], %[[A13]], %[[A14]], %[[A36]]
func.func @sparse_new_coo_permute_no(%arg0: !llvm.ptr<i8>) -> tensor<?x?xf32, #CooPNo> {
%0 = sparse_tensor.new %arg0 : !llvm.ptr<i8> to tensor<?x?xf32, #CooPNo>
return %0 : tensor<?x?xf32, #CooPNo>
}
|