1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
|
// RUN: mlir-opt %s --sparse-tensor-conversion --canonicalize --cse | FileCheck %s
// RUN: mlir-opt %s --post-sparsification-rewrite="enable-runtime-library=false enable-foreach=false" \
// RUN: --canonicalize --cse | FileCheck %s --check-prefix=CHECK-RWT
#SparseVector = #sparse_tensor.encoding<{
lvlTypes = ["compressed"]
}>
#SparseMatrix = #sparse_tensor.encoding<{
lvlTypes = ["dense", "compressed"]
}>
#SparseTensor = #sparse_tensor.encoding<{
lvlTypes = ["dense", "compressed", "compressed"],
dimToLvl = affine_map<(i,j,k) -> (k,i,j)>
}>
// CHECK-LABEL: func @sparse_convert_1d(
// CHECK-SAME: %[[Arg:.*]]: !llvm.ptr<i8>) -> tensor<13xi32>
// CHECK-DAG: %[[I0:.*]] = arith.constant 0 : index
// CHECK-DAG: %[[I13:.*]] = arith.constant 13 : index
// CHECK-DAG: %[[DenseDLT:.*]] = arith.constant 4 : i8
// CHECK-DAG: %[[C0:.*]] = arith.constant 0 : i32
// CHECK-DAG: %[[C6:.*]] = arith.constant 6 : i32
//
// CHECK-DAG: %[[LvlTypes:.*]] = memref.alloca() : memref<1xi8>
// CHECK-DAG: %[[LvlTypesP:.*]] = memref.cast %[[LvlTypes]] : memref<1xi8> to memref<?xi8>
// CHECK-DAG: memref.store %[[DenseDLT]], %[[LvlTypes]][%[[I0]]] : memref<1xi8>
// CHECK-DAG: %[[DimSizes:.*]] = memref.alloca() : memref<1xindex>
// CHECK-DAG: %[[DimSizesP:.*]] = memref.cast %[[DimSizes]] : memref<1xindex> to memref<?xindex>
// CHECK-DAG: memref.store %[[I13]], %[[DimSizes]][%[[I0]]] : memref<1xindex>
// CHECK-DAG: %[[LvlSizes:.*]] = memref.alloca() : memref<1xindex>
// CHECK-DAG: %[[LvlSizesP:.*]] = memref.cast %[[LvlSizes]] : memref<1xindex> to memref<?xindex>
// CHECK-DAG: %[[Iota:.*]] = memref.alloca() : memref<1xindex>
// CHECK-DAG: %[[IotaP:.*]] = memref.cast %[[Iota]] : memref<1xindex> to memref<?xindex>
// CHECK-DAG: memref.store %[[I0]], %[[Iota]][%[[I0]]] : memref<1xindex>
// CHECK: %[[Iter:.*]] = call @newSparseTensor(%[[DimSizesP]], %[[LvlSizesP]], %[[LvlTypesP]], %[[IotaP]], %[[IotaP]], %[[C0]], %[[C0]], %[[C6]], %[[C6]], %[[Arg]])
//
// CHECK-DAG: %[[IndS:.*]] = memref.alloca() : memref<1xindex>
// CHECK-DAG: %[[IndD:.*]] = memref.cast %[[IndS]] : memref<1xindex> to memref<?xindex>
// CHECK-DAG: %[[ElemBuffer:.*]] = memref.alloca() : memref<i32>
// CHECK-DAG: %[[M:.*]] = memref.alloc() : memref<13xi32>
// CHECK-DAG: linalg.fill ins(%[[C0]] : i32) outs(%[[M]] : memref<13xi32>)
// CHECK: scf.while : () -> () {
// CHECK: %[[Cond:.*]] = func.call @getNextI32(%[[Iter]], %[[IndD]], %[[ElemBuffer]]) : (!llvm.ptr<i8>, memref<?xindex>, memref<i32>) -> i1
// CHECK: scf.condition(%[[Cond]])
// CHECK: } do {
// CHECK: %[[Iv0:.*]] = memref.load %[[IndS]][%[[I0]]] : memref<1xindex>
// CHECK: %[[ElemVal:.*]] = memref.load %[[ElemBuffer]][] : memref<i32>
// CHECK: memref.store %[[ElemVal]], %[[M]][%[[Iv0]]] : memref<13xi32>
// CHECK: scf.yield
// CHECK: }
// CHECK: %[[T:.*]] = bufferization.to_tensor %[[M]] : memref<13xi32>
// CHECK: return %[[T]] : tensor<13xi32>
func.func @sparse_convert_1d(%arg0: tensor<13xi32, #SparseVector>) -> tensor<13xi32> {
%0 = sparse_tensor.convert %arg0 : tensor<13xi32, #SparseVector> to tensor<13xi32>
return %0 : tensor<13xi32>
}
// CHECK-LABEL: func @sparse_convert_1d_dyn(
// CHECK-SAME: %[[Arg:.*]]: !llvm.ptr<i8>) -> tensor<?xi32>
// CHECK-DAG: %[[I0:.*]] = arith.constant 0 : index
// CHECK-DAG: %[[DenseDLT:.*]] = arith.constant 4 : i8
// CHECK-DAG: %[[C0:.*]] = arith.constant 0 : i32
// CHECK-DAG: %[[C6:.*]] = arith.constant 6 : i32
//
// CHECK-DAG: %[[LvlTypes:.*]] = memref.alloca() : memref<1xi8>
// CHECK-DAG: %[[LvlTypesP:.*]] = memref.cast %[[LvlTypes]] : memref<1xi8> to memref<?xi8>
// CHECK-DAG: memref.store %[[DenseDLT]], %[[LvlTypes]][%[[I0]]] : memref<1xi8>
// CHECK-DAG: %[[DimSizes:.*]] = memref.alloca() : memref<1xindex>
// CHECK-DAG: %[[DimSizesP:.*]] = memref.cast %[[DimSizes]] : memref<1xindex> to memref<?xindex>
// CHECK-DAG: %[[SizeI0:.*]] = call @sparseDimSize(%[[Arg]], %[[I0]]) : (!llvm.ptr<i8>, index) -> index
// CHECK-DAG: memref.store %[[SizeI0]], %[[DimSizes]][%[[I0]]] : memref<1xindex>
// CHECK-DAG: %[[LvlSizes:.*]] = memref.alloca() : memref<1xindex>
// CHECK-DAG: %[[LvlSizesP:.*]] = memref.cast %[[LvlSizes]] : memref<1xindex> to memref<?xindex>
// CHECK-DAG: %[[Iota:.*]] = memref.alloca() : memref<1xindex>
// CHECK-DAG: %[[IotaP:.*]] = memref.cast %[[Iota]] : memref<1xindex> to memref<?xindex>
// CHECK-DAG: memref.store %[[I0]], %[[Iota]][%[[I0]]] : memref<1xindex>
// CHECK: %[[Iter:.*]] = call @newSparseTensor(%[[DimSizesP]], %[[LvlSizesP]], %[[LvlTypesP]], %[[IotaP]], %[[IotaP]], %[[C0]], %[[C0]], %[[C6]], %[[C6]], %[[Arg]])
//
// CHECK-DAG: %[[IndS:.*]] = memref.alloca() : memref<1xindex>
// CHECK-DAG: %[[IndD:.*]] = memref.cast %[[IndS]] : memref<1xindex> to memref<?xindex>
// CHECK-DAG: %[[ElemBuffer:.*]] = memref.alloca() : memref<i32>
// CHECK-DAG: %[[M:.*]] = memref.alloc(%[[SizeI0]]) : memref<?xi32>
// CHECK-DAG: linalg.fill ins(%[[C0]] : i32) outs(%[[M]] : memref<?xi32>)
// CHECK: scf.while : () -> () {
// CHECK: %[[Cond:.*]] = func.call @getNextI32(%[[Iter]], %[[IndD]], %[[ElemBuffer]]) : (!llvm.ptr<i8>, memref<?xindex>, memref<i32>) -> i1
// CHECK: scf.condition(%[[Cond]])
// CHECK: } do {
// CHECK: %[[Iv0:.*]] = memref.load %[[IndS]][%[[I0]]] : memref<1xindex>
// CHECK: %[[ElemVal:.*]] = memref.load %[[ElemBuffer]][] : memref<i32>
// CHECK: memref.store %[[ElemVal]], %[[M]][%[[Iv0]]] : memref<?xi32>
// CHECK: scf.yield
// CHECK: }
// CHECK: %[[T:.*]] = bufferization.to_tensor %[[M]] : memref<?xi32>
// CHECK: return %[[T]] : tensor<?xi32>
func.func @sparse_convert_1d_dyn(%arg0: tensor<?xi32, #SparseVector>) -> tensor<?xi32> {
%0 = sparse_tensor.convert %arg0 : tensor<?xi32, #SparseVector> to tensor<?xi32>
return %0 : tensor<?xi32>
}
// CHECK-LABEL: func @sparse_convert_2d(
// CHECK-SAME: %[[Arg:.*]]: !llvm.ptr<i8>) -> tensor<2x4xf64>
// CHECK-DAG: %[[I0:.*]] = arith.constant 0 : index
// CHECK-DAG: %[[I1:.*]] = arith.constant 1 : index
// CHECK-DAG: %[[I2:.*]] = arith.constant 2 : index
// CHECK-DAG: %[[I4:.*]] = arith.constant 4 : index
// CHECK-DAG: %[[DenseDLT:.*]] = arith.constant 4 : i8
// CHECK-DAG: %[[ActionToIter:.*]] = arith.constant 6 : i32
// CHECK-DAG: %[[E0:.*]] = arith.constant 0.000000e+00 : f64
//
// CHECK-DAG: %[[LvlTypes:.*]] = memref.alloca() : memref<2xi8>
// CHECK-DAG: %[[LvlTypesP:.*]] = memref.cast %[[LvlTypes]] : memref<2xi8> to memref<?xi8>
// CHECK-DAG: memref.store %[[DenseDLT]], %[[LvlTypes]][%[[I0]]] : memref<2xi8>
// CHECK-DAG: memref.store %[[DenseDLT]], %[[LvlTypes]][%[[I1]]] : memref<2xi8>
// CHECK-DAG: %[[DimSizes:.*]] = memref.alloca() : memref<2xindex>
// CHECK-DAG: %[[DimSizesP:.*]] = memref.cast %[[DimSizes]] : memref<2xindex> to memref<?xindex>
// CHECK-DAG: memref.store %[[I2]], %[[DimSizes]][%[[I0]]] : memref<2xindex>
// CHECK-DAG: memref.store %[[I4]], %[[DimSizes]][%[[I1]]] : memref<2xindex>
// CHECK-DAG: %[[LvlSizes:.*]] = memref.alloca() : memref<2xindex>
// CHECK-DAG: %[[LvlSizesP:.*]] = memref.cast %[[LvlSizes]] : memref<2xindex> to memref<?xindex>
// CHECK-DAG: %[[Iota:.*]] = memref.alloca() : memref<2xindex>
// CHECK-DAG: %[[IotaP:.*]] = memref.cast %[[Iota]] : memref<2xindex> to memref<?xindex>
// CHECK-DAG: memref.store %[[I0]], %[[Iota]][%[[I0]]] : memref<2xindex>
// CHECK-DAG: memref.store %[[I1]], %[[Iota]][%[[I1]]] : memref<2xindex>
// CHECK: %[[Iter:.*]] = call @newSparseTensor(%[[DimSizesP]], %[[LvlSizesP]], %[[LvlTypesP]], %[[IotaP]], %[[IotaP]], %{{.*}}, %{{.*}}, %{{.*}}, %[[ActionToIter]], %[[Arg]])
//
// CHECK-DAG: %[[IndS:.*]] = memref.alloca() : memref<2xindex>
// CHECK-DAG: %[[IndD:.*]] = memref.cast %[[IndS]] : memref<2xindex> to memref<?xindex>
// CHECK-DAG: %[[ElemBuffer:.*]] = memref.alloca() : memref<f64>
// CHECK-DAG: %[[M:.*]] = memref.alloc() : memref<2x4xf64>
// CHECK-DAG: linalg.fill ins(%[[E0]] : f64) outs(%[[M]] : memref<2x4xf64>)
// CHECK: scf.while : () -> () {
// CHECK: %[[Cond:.*]] = func.call @getNextF64(%[[Iter]], %[[IndD]], %[[ElemBuffer]]) : (!llvm.ptr<i8>, memref<?xindex>, memref<f64>) -> i1
// CHECK: scf.condition(%[[Cond]])
// CHECK: } do {
// CHECK: %[[Iv0:.*]] = memref.load %[[IndS]][%[[I0]]] : memref<2xindex>
// CHECK: %[[Iv1:.*]] = memref.load %[[IndS]][%[[I1]]] : memref<2xindex>
// CHECK: %[[ElemVal:.*]] = memref.load %[[ElemBuffer]][] : memref<f64>
// CHECK: memref.store %[[ElemVal]], %[[M]][%[[Iv0]], %[[Iv1]]] : memref<2x4xf64>
// CHECK: scf.yield
// CHECK: }
// CHECK: %[[T:.*]] = bufferization.to_tensor %[[M]] : memref<2x4xf64>
// CHECK: return %[[T]] : tensor<2x4xf64>
// CHECK-RWT-LABEL: func.func @sparse_convert_2d(
// CHECK-RWT-SAME: %[[A:.*]]: tensor<2x4xf64, #sparse_tensor.encoding<{ lvlTypes = [ "dense", "compressed" ] }>>) -> tensor<2x4xf64> {
// CHECK-RWT: %[[F0:.*]] = arith.constant 0.000000e+00 : f64
// CHECK-RWT: %[[B:.*]] = memref.alloc() : memref<2x4xf64>
// CHECK-RWT: linalg.fill ins(%[[F0]] : f64) outs(%[[B]]
// CHECK-RWT: sparse_tensor.foreach in %[[A]]
// CHECK-RWT: ^bb0(%[[FI0:.*]]: index, %[[FI1:.*]]: index, %[[FV:.*]]: f64):
// CHECK-RWT: memref.store %[[FV]], %[[B]]{{\[}}%[[FI0]], %[[FI1]]]
// CHECK-RWT: }
// CHECK-RWT: %[[T:.*]] = bufferization.to_tensor %[[B]]
// CHECK-RWT: return %[[T]] : tensor<2x4xf64>
func.func @sparse_convert_2d(%arg0: tensor<2x4xf64, #SparseMatrix>) -> tensor<2x4xf64> {
%0 = sparse_tensor.convert %arg0 : tensor<2x4xf64, #SparseMatrix> to tensor<2x4xf64>
return %0 : tensor<2x4xf64>
}
// CHECK-LABEL: func @sparse_convert_2d_dyn0(
// CHECK-SAME: %[[Arg:.*]]: !llvm.ptr<i8>) -> tensor<?x4xf64>
// CHECK-DAG: %[[I0:.*]] = arith.constant 0 : index
// CHECK-DAG: %[[I1:.*]] = arith.constant 1 : index
// CHECK-DAG: %[[I4:.*]] = arith.constant 4 : index
// CHECK-DAG: %[[DenseDLT:.*]] = arith.constant 4 : i8
// CHECK-DAG: %[[ActionToIter:.*]] = arith.constant 6 : i32
// CHECK-DAG: %[[E0:.*]] = arith.constant 0.000000e+00 : f64
//
// CHECK-DAG: %[[LvlTypes:.*]] = memref.alloca() : memref<2xi8>
// CHECK-DAG: %[[LvlTypesP:.*]] = memref.cast %[[LvlTypes]] : memref<2xi8> to memref<?xi8>
// CHECK-DAG: memref.store %[[DenseDLT]], %[[LvlTypes]][%[[I0]]] : memref<2xi8>
// CHECK-DAG: memref.store %[[DenseDLT]], %[[LvlTypes]][%[[I1]]] : memref<2xi8>
// CHECK-DAG: %[[DimSizes:.*]] = memref.alloca() : memref<2xindex>
// CHECK-DAG: %[[DimSizesP:.*]] = memref.cast %[[DimSizes]] : memref<2xindex> to memref<?xindex>
// CHECK-DAG: %[[SizeI0:.*]] = call @sparseDimSize(%[[Arg]], %[[I0]]) : (!llvm.ptr<i8>, index) -> index
// CHECK-DAG: memref.store %[[SizeI0]], %[[DimSizes]][%[[I0]]] : memref<2xindex>
// CHECK-DAG: memref.store %[[I4]], %[[DimSizes]][%[[I1]]] : memref<2xindex>
// CHECK-DAG: %[[LvlSizes:.*]] = memref.alloca() : memref<2xindex>
// CHECK-DAG: %[[LvlSizesP:.*]] = memref.cast %[[LvlSizes]] : memref<2xindex> to memref<?xindex>
// CHECK-DAG: %[[Iota:.*]] = memref.alloca() : memref<2xindex>
// CHECK-DAG: %[[IotaP:.*]] = memref.cast %[[Iota]] : memref<2xindex> to memref<?xindex>
// CHECK-DAG: memref.store %[[I0]], %[[Iota]][%[[I0]]] : memref<2xindex>
// CHECK-DAG: memref.store %[[I1]], %[[Iota]][%[[I1]]] : memref<2xindex>
// CHECK: %[[Iter:.*]] = call @newSparseTensor(%[[DimSizesP]], %[[LvlSizesP]], %[[LvlTypesP]], %[[IotaP]], %[[IotaP]], %{{.*}}, %{{.*}}, %{{.*}}, %[[ActionToIter]], %[[Arg]])
//
// CHECK-DAG: %[[IndS:.*]] = memref.alloca() : memref<2xindex>
// CHECK-DAG: %[[IndD:.*]] = memref.cast %[[IndS]] : memref<2xindex> to memref<?xindex>
// CHECK-DAG: %[[ElemBuffer:.*]] = memref.alloca() : memref<f64>
// CHECK-DAG: %[[M:.*]] = memref.alloc(%[[SizeI0]]) : memref<?x4xf64>
// CHECK-DAG: linalg.fill ins(%[[E0]] : f64) outs(%[[M]] : memref<?x4xf64>)
// CHECK: scf.while : () -> () {
// CHECK: %[[Cond:.*]] = func.call @getNextF64(%[[Iter]], %[[IndD]], %[[ElemBuffer]]) : (!llvm.ptr<i8>, memref<?xindex>, memref<f64>) -> i1
// CHECK: scf.condition(%[[Cond]])
// CHECK: } do {
// CHECK: %[[Iv0:.*]] = memref.load %[[IndS]][%[[I0]]] : memref<2xindex>
// CHECK: %[[Iv1:.*]] = memref.load %[[IndS]][%[[I1]]] : memref<2xindex>
// CHECK: %[[ElemVal:.*]] = memref.load %[[ElemBuffer]][] : memref<f64>
// CHECK: memref.store %[[ElemVal]], %[[M]][%[[Iv0]], %[[Iv1]]] : memref<?x4xf64>
// CHECK: scf.yield
// CHECK: }
// CHECK: %[[T:.*]] = bufferization.to_tensor %[[M]] : memref<?x4xf64>
// CHECK: return %[[T]] : tensor<?x4xf64>
func.func @sparse_convert_2d_dyn0(%arg0: tensor<?x4xf64, #SparseMatrix>) -> tensor<?x4xf64> {
%0 = sparse_tensor.convert %arg0 : tensor<?x4xf64, #SparseMatrix> to tensor<?x4xf64>
return %0 : tensor<?x4xf64>
}
// CHECK-LABEL: func @sparse_convert_2d_dyn1(
// CHECK-SAME: %[[Arg:.*]]: !llvm.ptr<i8>) -> tensor<2x?xf64>
// CHECK-DAG: %[[I0:.*]] = arith.constant 0 : index
// CHECK-DAG: %[[I1:.*]] = arith.constant 1 : index
// CHECK-DAG: %[[I2:.*]] = arith.constant 2 : index
// CHECK-DAG: %[[DenseDLT:.*]] = arith.constant 4 : i8
// CHECK-DAG: %[[ActionToIter:.*]] = arith.constant 6 : i32
// CHECK-DAG: %[[E0:.*]] = arith.constant 0.000000e+00 : f64
//
// CHECK-DAG: %[[LvlTypes:.*]] = memref.alloca() : memref<2xi8>
// CHECK-DAG: %[[LvlTypesP:.*]] = memref.cast %[[LvlTypes]] : memref<2xi8> to memref<?xi8>
// CHECK-DAG: memref.store %[[DenseDLT]], %[[LvlTypes]][%[[I0]]] : memref<2xi8>
// CHECK-DAG: memref.store %[[DenseDLT]], %[[LvlTypes]][%[[I1]]] : memref<2xi8>
// CHECK-DAG: %[[DimSizes:.*]] = memref.alloca() : memref<2xindex>
// CHECK-DAG: %[[DimSizesP:.*]] = memref.cast %[[DimSizes]] : memref<2xindex> to memref<?xindex>
// CHECK-DAG: %[[SizeI1:.*]] = call @sparseDimSize(%[[Arg]], %[[I1]]) : (!llvm.ptr<i8>, index) -> index
// CHECK-DAG: memref.store %[[I2]], %[[DimSizes]][%[[I0]]] : memref<2xindex>
// CHECK-DAG: memref.store %[[SizeI1]], %[[DimSizes]][%[[I1]]] : memref<2xindex>
// CHECK-DAG: %[[LvlSizes:.*]] = memref.alloca() : memref<2xindex>
// CHECK-DAG: %[[LvlSizesP:.*]] = memref.cast %[[LvlSizes]] : memref<2xindex> to memref<?xindex>
// CHECK-DAG: %[[Iota:.*]] = memref.alloca() : memref<2xindex>
// CHECK-DAG: %[[IotaP:.*]] = memref.cast %[[Iota]] : memref<2xindex> to memref<?xindex>
// CHECK-DAG: memref.store %[[I0]], %[[Iota]][%[[I0]]] : memref<2xindex>
// CHECK-DAG: memref.store %[[I1]], %[[Iota]][%[[I1]]] : memref<2xindex>
// CHECK: %[[Iter:.*]] = call @newSparseTensor(%[[DimSizesP]], %[[LvlSizesP]], %[[LvlTypesP]], %[[IotaP]], %[[IotaP]], %{{.*}}, %{{.*}}, %{{.*}}, %[[ActionToIter]], %[[Arg]])
//
// CHECK-DAG: %[[IndS:.*]] = memref.alloca() : memref<2xindex>
// CHECK-DAG: %[[IndD:.*]] = memref.cast %[[IndS]] : memref<2xindex> to memref<?xindex>
// CHECK-DAG: %[[ElemBuffer:.*]] = memref.alloca() : memref<f64>
// CHECK-DAG: %[[M:.*]] = memref.alloc(%[[SizeI1]]) : memref<2x?xf64>
// CHECK-DAG: linalg.fill ins(%[[E0]] : f64) outs(%[[M]] : memref<2x?xf64>)
// CHECK: scf.while : () -> () {
// CHECK: %[[Cond:.*]] = func.call @getNextF64(%[[Iter]], %[[IndD]], %[[ElemBuffer]]) : (!llvm.ptr<i8>, memref<?xindex>, memref<f64>) -> i1
// CHECK: scf.condition(%[[Cond]])
// CHECK: } do {
// CHECK: %[[Iv0:.*]] = memref.load %[[IndS]][%[[I0]]] : memref<2xindex>
// CHECK: %[[Iv1:.*]] = memref.load %[[IndS]][%[[I1]]] : memref<2xindex>
// CHECK: %[[ElemVal:.*]] = memref.load %[[ElemBuffer]][] : memref<f64>
// CHECK: memref.store %[[ElemVal]], %[[M]][%[[Iv0]], %[[Iv1]]] : memref<2x?xf64>
// CHECK: scf.yield
// CHECK: }
// CHECK: %[[T:.*]] = bufferization.to_tensor %[[M]] : memref<2x?xf64>
// CHECK: return %[[T]] : tensor<2x?xf64>
func.func @sparse_convert_2d_dyn1(%arg0: tensor<2x?xf64, #SparseMatrix>) -> tensor<2x?xf64> {
%0 = sparse_tensor.convert %arg0 : tensor<2x?xf64, #SparseMatrix> to tensor<2x?xf64>
return %0 : tensor<2x?xf64>
}
// CHECK-LABEL: func @sparse_convert_2d_dyn2(
// CHECK-SAME: %[[Arg:.*]]: !llvm.ptr<i8>) -> tensor<?x?xf64>
// CHECK-DAG: %[[I0:.*]] = arith.constant 0 : index
// CHECK-DAG: %[[I1:.*]] = arith.constant 1 : index
// CHECK-DAG: %[[DenseDLT:.*]] = arith.constant 4 : i8
// CHECK-DAG: %[[ActionToIter:.*]] = arith.constant 6 : i32
// CHECK-DAG: %[[E0:.*]] = arith.constant 0.000000e+00 : f64
//
// CHECK-DAG: %[[LvlTypes:.*]] = memref.alloca() : memref<2xi8>
// CHECK-DAG: %[[LvlTypesP:.*]] = memref.cast %[[LvlTypes]] : memref<2xi8> to memref<?xi8>
// CHECK-DAG: memref.store %[[DenseDLT]], %[[LvlTypes]][%[[I0]]] : memref<2xi8>
// CHECK-DAG: memref.store %[[DenseDLT]], %[[LvlTypes]][%[[I1]]] : memref<2xi8>
// CHECK-DAG: %[[DimSizes:.*]] = memref.alloca() : memref<2xindex>
// CHECK-DAG: %[[DimSizesP:.*]] = memref.cast %[[DimSizes]] : memref<2xindex> to memref<?xindex>
// CHECK-DAG: %[[SizeI0:.*]] = call @sparseDimSize(%[[Arg]], %[[I0]]) : (!llvm.ptr<i8>, index) -> index
// CHECK-DAG: %[[SizeI1:.*]] = call @sparseDimSize(%[[Arg]], %[[I1]]) : (!llvm.ptr<i8>, index) -> index
// CHECK-DAG: memref.store %[[SizeI0]], %[[DimSizes]][%[[I0]]] : memref<2xindex>
// CHECK-DAG: memref.store %[[SizeI1]], %[[DimSizes]][%[[I1]]] : memref<2xindex>
// CHECK-DAG: %[[LvlSizes:.*]] = memref.alloca() : memref<2xindex>
// CHECK-DAG: %[[LvlSizesP:.*]] = memref.cast %[[LvlSizes]] : memref<2xindex> to memref<?xindex>
// CHECK-DAG: %[[Iota:.*]] = memref.alloca() : memref<2xindex>
// CHECK-DAG: %[[IotaP:.*]] = memref.cast %[[Iota]] : memref<2xindex> to memref<?xindex>
// CHECK-DAG: memref.store %[[I0]], %[[Iota]][%[[I0]]] : memref<2xindex>
// CHECK-DAG: memref.store %[[I1]], %[[Iota]][%[[I1]]] : memref<2xindex>
// CHECK: %[[Iter:.*]] = call @newSparseTensor(%[[DimSizesP]], %[[LvlSizesP]], %[[LvlTypesP]], %[[IotaP]], %[[IotaP]], %{{.*}}, %{{.*}}, %{{.*}}, %[[ActionToIter]], %[[Arg]])
//
// CHECK-DAG: %[[IndS:.*]] = memref.alloca() : memref<2xindex>
// CHECK-DAG: %[[IndD:.*]] = memref.cast %[[IndS]] : memref<2xindex> to memref<?xindex>
// CHECK-DAG: %[[ElemBuffer:.*]] = memref.alloca() : memref<f64>
// CHECK-DAG: %[[M:.*]] = memref.alloc(%[[SizeI0]], %[[SizeI1]]) : memref<?x?xf64>
// CHECK-DAG: linalg.fill ins(%[[E0]] : f64) outs(%[[M]] : memref<?x?xf64>)
// CHECK: scf.while : () -> () {
// CHECK: %[[Cond:.*]] = func.call @getNextF64(%[[Iter]], %[[IndD]], %[[ElemBuffer]]) : (!llvm.ptr<i8>, memref<?xindex>, memref<f64>) -> i1
// CHECK: scf.condition(%[[Cond]])
// CHECK: } do {
// CHECK: %[[Iv0:.*]] = memref.load %[[IndS]][%[[I0]]] : memref<2xindex>
// CHECK: %[[Iv1:.*]] = memref.load %[[IndS]][%[[I1]]] : memref<2xindex>
// CHECK: %[[ElemVal:.*]] = memref.load %[[ElemBuffer]][] : memref<f64>
// CHECK: memref.store %[[ElemVal]], %[[M]][%[[Iv0]], %[[Iv1]]] : memref<?x?xf64>
// CHECK: scf.yield
// CHECK: }
// CHECK: %[[T:.*]] = bufferization.to_tensor %[[M]] : memref<?x?xf64>
// CHECK: return %[[T]] : tensor<?x?xf64>
// CHECK-RWT-LABEL: func.func @sparse_convert_2d_dyn2(
// CHECK-RWT-SAME: %[[A:.*]]: tensor<?x?xf64, #sparse_tensor.encoding<{ lvlTypes = [ "dense", "compressed" ] }>>) -> tensor<?x?xf64> {
// CHECK-RWT-DAG: %[[C0:.*]] = arith.constant 0 : index
// CHECK-RWT-DAG: %[[C1:.*]] = arith.constant 1 : index
// CHECK-RWT-DAG: %[[F0:.*]] = arith.constant 0.000000e+00 : f64
// CHECK-RWT: %[[D0:.*]] = tensor.dim %[[A]], %[[C0]]
// CHECK-RWT: %[[D1:.*]] = tensor.dim %[[A]], %[[C1]]
// CHECK-RWT: %[[B:.*]] = memref.alloc(%[[D0]], %[[D1]])
// CHECK-RWT: linalg.fill ins(%[[F0]] : f64) outs(%[[B]]
// CHECK-RWT: sparse_tensor.foreach in %[[A]]
// CHECK-RWT: ^bb0(%[[FI0:.*]]: index, %[[FI1:.*]]: index, %[[FV:.*]]: f64):
// CHECK-RWT: memref.store %[[FV]], %[[B]]{{\[}}%[[FI0]], %[[FI1]]]
// CHECK-RWT: }
// CHECK-RWT: %[[T:.*]] = bufferization.to_tensor %[[B]]
// CHECK-RWT: return %[[T]] : tensor<?x?xf64>
func.func @sparse_convert_2d_dyn2(%arg0: tensor<?x?xf64, #SparseMatrix>) -> tensor<?x?xf64> {
%0 = sparse_tensor.convert %arg0 : tensor<?x?xf64, #SparseMatrix> to tensor<?x?xf64>
return %0 : tensor<?x?xf64>
}
// CHECK-LABEL: func @sparse_convert_3d(
// CHECK-SAME: %[[Arg:.*]]: !llvm.ptr<i8>) -> tensor<2x3x4xf64>
// CHECK-DAG: %[[I0:.*]] = arith.constant 0 : index
// CHECK-DAG: %[[I1:.*]] = arith.constant 1 : index
// CHECK-DAG: %[[I2:.*]] = arith.constant 2 : index
// CHECK-DAG: %[[I3:.*]] = arith.constant 3 : index
// CHECK-DAG: %[[I4:.*]] = arith.constant 4 : index
// CHECK-DAG: %[[DenseDLT:.*]] = arith.constant 4 : i8
// CHECK-DAG: %[[ActionToIter:.*]] = arith.constant 6 : i32
// CHECK-DAG: %[[E0:.*]] = arith.constant 0.000000e+00 : f64
//
// CHECK-DAG: %[[LvlTypes:.*]] = memref.alloca() : memref<3xi8>
// CHECK-DAG: %[[LvlTypesP:.*]] = memref.cast %[[LvlTypes]] : memref<3xi8> to memref<?xi8>
// CHECK-DAG: memref.store %[[DenseDLT]], %[[LvlTypes]][%[[I0]]] : memref<3xi8>
// CHECK-DAG: memref.store %[[DenseDLT]], %[[LvlTypes]][%[[I1]]] : memref<3xi8>
// CHECK-DAG: memref.store %[[DenseDLT]], %[[LvlTypes]][%[[I2]]] : memref<3xi8>
// CHECK-DAG: %[[DimSizes:.*]] = memref.alloca() : memref<3xindex>
// CHECK-DAG: %[[DimSizesP:.*]] = memref.cast %[[DimSizes]] : memref<3xindex> to memref<?xindex>
// CHECK-DAG: memref.store %[[I2]], %[[DimSizes]][%[[I0]]] : memref<3xindex>
// CHECK-DAG: memref.store %[[I3]], %[[DimSizes]][%[[I1]]] : memref<3xindex>
// CHECK-DAG: memref.store %[[I4]], %[[DimSizes]][%[[I2]]] : memref<3xindex>
// CHECK-DAG: %[[LvlSizes:.*]] = memref.alloca() : memref<3xindex>
// CHECK-DAG: %[[LvlSizesP:.*]] = memref.cast %[[LvlSizes]] : memref<3xindex> to memref<?xindex>
// CHECK-DAG: %[[Iota:.*]] = memref.alloca() : memref<3xindex>
// CHECK-DAG: %[[IotaP:.*]] = memref.cast %[[Iota]] : memref<3xindex> to memref<?xindex>
// CHECK-DAG: memref.store %[[I0]], %[[Iota]][%[[I0]]] : memref<3xindex>
// CHECK-DAG: memref.store %[[I1]], %[[Iota]][%[[I1]]] : memref<3xindex>
// CHECK-DAG: memref.store %[[I2]], %[[Iota]][%[[I2]]] : memref<3xindex>
// CHECK: %[[Iter:.*]] = call @newSparseTensor(%[[DimSizesP]], %[[LvlSizesP]], %[[LvlTypesP]], %[[IotaP]], %[[IotaP]], %{{.*}}, %{{.*}}, %{{.*}}, %[[ActionToIter]], %[[Arg]])
//
// CHECK-DAG: %[[IndS:.*]] = memref.alloca() : memref<3xindex>
// CHECK-DAG: %[[IndD:.*]] = memref.cast %[[IndS]] : memref<3xindex> to memref<?xindex>
// CHECK-DAG: %[[ElemBuffer:.*]] = memref.alloca() : memref<f64>
// CHECK-DAG: %[[M:.*]] = memref.alloc() : memref<2x3x4xf64>
// CHECK-DAG: linalg.fill ins(%[[E0]] : f64) outs(%[[M]] : memref<2x3x4xf64>)
// CHECK: scf.while : () -> () {
// CHECK: %[[Cond:.*]] = func.call @getNextF64(%[[Iter]], %[[IndD]], %[[ElemBuffer]]) : (!llvm.ptr<i8>, memref<?xindex>, memref<f64>) -> i1
// CHECK: scf.condition(%[[Cond]])
// CHECK: } do {
// CHECK: %[[Iv0:.*]] = memref.load %[[IndS]][%[[I0]]] : memref<3xindex>
// CHECK: %[[Iv1:.*]] = memref.load %[[IndS]][%[[I1]]] : memref<3xindex>
// CHECK: %[[Iv2:.*]] = memref.load %[[IndS]][%[[I2]]] : memref<3xindex>
// CHECK: %[[ElemVal:.*]] = memref.load %[[ElemBuffer]][] : memref<f64>
// CHECK: memref.store %[[ElemVal]], %[[M]][%[[Iv0]], %[[Iv1]], %[[Iv2]]] : memref<2x3x4xf64>
// CHECK: scf.yield
// CHECK: }
// CHECK: %[[T:.*]] = bufferization.to_tensor %[[M]] : memref<2x3x4xf64>
// CHECK: return %[[T]] : tensor<2x3x4xf64>
func.func @sparse_convert_3d(%arg0: tensor<2x3x4xf64, #SparseTensor>) -> tensor<2x3x4xf64> {
%0 = sparse_tensor.convert %arg0 : tensor<2x3x4xf64, #SparseTensor> to tensor<2x3x4xf64>
return %0 : tensor<2x3x4xf64>
}
|