File: dense.mlir

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (154 lines) | stat: -rw-r--r-- 8,150 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
// NOTE: Assertions have been autogenerated by utils/generate-test-checks.py
// RUN: mlir-opt %s -sparsification | FileCheck %s

// Test to demonstrate the difference between non-annotated dense tensors
// and all-dense-annotated "sparse" tensors. The former class remains as
// two-dimensional tensors that are bufferized by subsequent passes. The
// latter class is linearized into one-dimensional buffers that are backed
// by the runtime support library.

#DenseMatrix = #sparse_tensor.encoding<{ lvlTypes = [ "dense", "dense"  ] }>

#trait_2d = {
  indexing_maps = [
    affine_map<(i,j) -> (i,j)>,  // A
    affine_map<(i,j) -> (i,j)>   // X (out)
  ],
  iterator_types = ["parallel", "parallel"],
  doc = "X(i,j) = A(i,j) + 1"
}

#trait_3d = {
  indexing_maps = [
    affine_map<(i,j,k) -> (i,j,k)>,  // A
    affine_map<(i,j,k) -> (i,j)>     // X (out)
  ],
  iterator_types = ["parallel", "parallel", "reduction"],
  doc = "X(i,j) += A(i,j,k)"
}

//
// Test with an all-dense-annotated "sparse" matrix as input and
// a non-annotated dense matrix as output.
//
// CHECK-LABEL:   func @dense1(
// CHECK-SAME:                 %[[VAL_0:.*]]: tensor<32x16xf32, #sparse_tensor.encoding<{{.*}}>>,
// CHECK-SAME:                 %[[VAL_1:.*]]: tensor<32x16xf32>) -> tensor<32x16xf32> {
// CHECK-DAG:       %[[VAL_2:.*]] = arith.constant 1.000000e+00 : f32
// CHECK-DAG:       %[[VAL_3:.*]] = arith.constant 32 : index
// CHECK-DAG:       %[[VAL_4:.*]] = arith.constant 16 : index
// CHECK-DAG:       %[[VAL_5:.*]] = arith.constant 0 : index
// CHECK-DAG:       %[[VAL_6:.*]] = arith.constant 1 : index
// CHECK:           %[[VAL_7:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32x16xf32, #sparse_tensor.encoding<{{.*}}>> to memref<?xf32>
// CHECK:           %[[VAL_8:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32x16xf32>
// CHECK:           scf.for %[[VAL_9:.*]] = %[[VAL_5]] to %[[VAL_3]] step %[[VAL_6]] {
// CHECK:             scf.for %[[VAL_10:.*]] = %[[VAL_5]] to %[[VAL_4]] step %[[VAL_6]] {
// CHECK:               %[[VAL_11:.*]] = arith.muli %[[VAL_9]], %[[VAL_4]] : index
// CHECK:               %[[VAL_12:.*]] = arith.addi %[[VAL_11]], %[[VAL_10]] : index
// CHECK:               %[[VAL_13:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_12]]] : memref<?xf32>
// CHECK:               %[[VAL_14:.*]] = arith.addf %[[VAL_13]], %[[VAL_2]] : f32
// CHECK:               memref.store %[[VAL_14]], %[[VAL_8]]{{\[}}%[[VAL_9]], %[[VAL_10]]] : memref<32x16xf32>
// CHECK:             }
// CHECK:           }
// CHECK:           %[[VAL_15:.*]] = bufferization.to_tensor %[[VAL_8]] : memref<32x16xf32>
// CHECK:           return %[[VAL_15]] : tensor<32x16xf32>
// CHECK:         }
func.func @dense1(%arga: tensor<32x16xf32, #DenseMatrix>,
                  %argx: tensor<32x16xf32>)
	     -> tensor<32x16xf32> {
  %c = arith.constant 1.0 : f32
  %0 = linalg.generic #trait_2d
     ins(%arga: tensor<32x16xf32, #DenseMatrix>)
    outs(%argx: tensor<32x16xf32>) {
      ^bb(%a: f32, %x: f32):
        %1 = arith.addf %a, %c : f32
        linalg.yield %1 : f32
  } -> tensor<32x16xf32>
  return %0 : tensor<32x16xf32>
}

//
// Test with a non-annotated dense matrix as input and
// an all-dense annotated "sparse" matrix as output.
//
// CHECK-LABEL:   func @dense2(
// CHECK-SAME:      %[[VAL_0:.*]]: tensor<32x16xf32>,
// CHECK-SAME:      %[[VAL_1:.*]]: tensor<32x16xf32, #sparse_tensor.encoding<{{.*}}>>) -> tensor<32x16xf32, #sparse_tensor.encoding<{{.*}}>> {
// CHECK-DAG:       %[[VAL_2:.*]] = arith.constant 1.000000e+00 : f32
// CHECK-DAG:       %[[VAL_3:.*]] = arith.constant 32 : index
// CHECK-DAG:       %[[VAL_4:.*]] = arith.constant 16 : index
// CHECK-DAG:       %[[VAL_5:.*]] = arith.constant 0 : index
// CHECK-DAG:       %[[VAL_6:.*]] = arith.constant 1 : index
// CHECK:           %[[VAL_7:.*]] = bufferization.to_memref %[[VAL_0]] : memref<32x16xf32>
// CHECK:           %[[VAL_8:.*]] = sparse_tensor.values %[[VAL_1]] : tensor<32x16xf32, #sparse_tensor.encoding<{{.*}}>> to memref<?xf32>
// CHECK:           scf.for %[[VAL_9:.*]] = %[[VAL_5]] to %[[VAL_3]] step %[[VAL_6]] {
// CHECK:             scf.for %[[VAL_10:.*]] = %[[VAL_5]] to %[[VAL_4]] step %[[VAL_6]] {
// CHECK:               %[[VAL_11:.*]] = arith.muli %[[VAL_9]], %[[VAL_4]] : index
// CHECK:               %[[VAL_12:.*]] = arith.addi %[[VAL_11]], %[[VAL_10]] : index
// CHECK:               %[[VAL_13:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_9]], %[[VAL_10]]] : memref<32x16xf32>
// CHECK:               %[[VAL_14:.*]] = arith.addf %[[VAL_13]], %[[VAL_2]] : f32
// CHECK:               memref.store %[[VAL_14]], %[[VAL_8]]{{\[}}%[[VAL_12]]] : memref<?xf32>
// CHECK:             }
// CHECK:           }
// CHECK:           %[[VAL_15:.*]] = sparse_tensor.load %[[VAL_1]] : tensor<32x16xf32, #sparse_tensor.encoding<{{.*}}>>
// CHECK:           return %[[VAL_15]] : tensor<32x16xf32, #sparse_tensor.encoding<{{.*}}>>
// CHECK:         }
func.func @dense2(%arga: tensor<32x16xf32>,
                  %argx: tensor<32x16xf32, #DenseMatrix>)
	     -> tensor<32x16xf32, #DenseMatrix> {
  %c = arith.constant 1.0 : f32
  %0 = linalg.generic #trait_2d
     ins(%arga: tensor<32x16xf32>)
    outs(%argx: tensor<32x16xf32, #DenseMatrix>) {
      ^bb(%a: f32, %x: f32):
        %1 = arith.addf %a, %c : f32
        linalg.yield %1 : f32
  } -> tensor<32x16xf32, #DenseMatrix>
  return %0 : tensor<32x16xf32, #DenseMatrix>
}


//
// Test with a non-annotated dense matrix as input and
// an all-dense annotated "sparse" matrix as output.
// The missing innermost "k" index (due to a reduction) is accounted
// for by scalarizing the reduction operation for the output tensor.
//
// CHECK-LABEL:   func @dense3(
// CHECK-SAME:      %[[VAL_0:.*]]: tensor<32x16x8xf32>,
// CHECK-SAME:      %[[VAL_1:.*]]: tensor<32x16xf32, #sparse_tensor.encoding<{{.*}}>>) -> tensor<32x16xf32, #sparse_tensor.encoding<{{.*}}>> {
// CHECK-DAG:       %[[VAL_2:.*]] = arith.constant 8 : index
// CHECK-DAG:       %[[VAL_3:.*]] = arith.constant 32 : index
// CHECK-DAG:       %[[VAL_4:.*]] = arith.constant 16 : index
// CHECK-DAG:       %[[VAL_5:.*]] = arith.constant 0 : index
// CHECK-DAG:       %[[VAL_6:.*]] = arith.constant 1 : index
// CHECK:           %[[VAL_7:.*]] = bufferization.to_memref %[[VAL_0]] : memref<32x16x8xf32>
// CHECK:           %[[VAL_8:.*]] = sparse_tensor.values %[[VAL_1]] : tensor<32x16xf32, #sparse_tensor.encoding<{{.*}}}>> to memref<?xf32>
// CHECK:           scf.for %[[VAL_9:.*]] = %[[VAL_5]] to %[[VAL_3]] step %[[VAL_6]] {
// CHECK:             scf.for %[[VAL_10:.*]] = %[[VAL_5]] to %[[VAL_4]] step %[[VAL_6]] {
// CHECK:               %[[VAL_11:.*]] = arith.muli %[[VAL_9]], %[[VAL_4]] : index
// CHECK:               %[[VAL_12:.*]] = arith.addi %[[VAL_11]], %[[VAL_10]] : index
// CHECK:               %[[VAL_13:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_12]]] : memref<?xf32>
// CHECK:               %[[VAL_14:.*]] = scf.for %[[VAL_15:.*]] = %[[VAL_5]] to %[[VAL_2]] step %[[VAL_6]] iter_args(%[[VAL_16:.*]] = %[[VAL_13]]) -> (f32) {
// CHECK:                 %[[VAL_17:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_9]], %[[VAL_10]], %[[VAL_15]]] : memref<32x16x8xf32>
// CHECK:                 %[[VAL_18:.*]] = arith.addf %[[VAL_16]], %[[VAL_17]] : f32
// CHECK:                 scf.yield %[[VAL_18]] : f32
// CHECK:               }
// CHECK:               memref.store %[[VAL_19:.*]], %[[VAL_8]]{{\[}}%[[VAL_12]]] : memref<?xf32>
// CHECK:             }
// CHECK:           }
// CHECK:           %[[VAL_20:.*]] = sparse_tensor.load %[[VAL_1]] : tensor<32x16xf32, #sparse_tensor.encoding<{{.*}}>>
// CHECK:           return %[[VAL_20]] : tensor<32x16xf32, #sparse_tensor.encoding<{{.*}}>>
// CHECK:         }
func.func @dense3(%arga: tensor<32x16x8xf32>,
                  %argx: tensor<32x16xf32, #DenseMatrix>)
	     -> tensor<32x16xf32, #DenseMatrix> {
  %0 = linalg.generic #trait_3d
     ins(%arga: tensor<32x16x8xf32>)
    outs(%argx: tensor<32x16xf32, #DenseMatrix>) {
      ^bb(%a: f32, %x: f32):
        %1 = arith.addf %x, %a : f32
        linalg.yield %1 : f32
  } -> tensor<32x16xf32, #DenseMatrix>
  return %0 : tensor<32x16xf32, #DenseMatrix>
}