1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
|
// RUN: mlir-opt %s --sparse-tensor-conversion --canonicalize --cse | FileCheck %s
#SparseMatrix = #sparse_tensor.encoding<{lvlTypes = ["compressed", "compressed"]}>
#SparseMatrix_P = #sparse_tensor.encoding<{
lvlTypes = [ "compressed", "compressed" ],
dimToLvl = affine_map<(i,j) -> (j,i)>
}>
#SparseMatrix_D_P = #sparse_tensor.encoding<{
lvlTypes = [ "dense", "dense" ],
dimToLvl = affine_map<(i,j) -> (j,i)>
}>
// CHECK-LABEL: func.func @concat_mix_dense(
// CHECK-SAME: %[[TMP_arg0:.*]]: tensor<2x4xf64>,
// CHECK-SAME: %[[TMP_arg1:.*]]: !llvm.ptr<i8>)
// CHECK-DAG: %[[TMP_c2:.*]] = arith.constant 2 : index
// CHECK-DAG: %[[TMP_c6_i32:.*]] = arith.constant 6 : i32
// CHECK-DAG: %[[TMP_c1_i32:.*]] = arith.constant 1 : i32
// CHECK-DAG: %[[TMP_c0_i32:.*]] = arith.constant 0 : i32
// CHECK-DAG: %[[TMP_c8_i8:.*]] = arith.constant 8 : i8
// CHECK-DAG: %[[TMP_c3:.*]] = arith.constant 3 : index
// CHECK-DAG: %[[TMP_c1:.*]] = arith.constant 1 : index
// CHECK-DAG: %[[TMP_cst:.*]] = arith.constant 0.000000e+00 : f64
// CHECK-DAG: %[[TMP_c0:.*]] = arith.constant 0 : index
// CHECK-DAG: %[[TMP_c4:.*]] = arith.constant 4 : index
// CHECK: %[[TMP_0:.*]] = memref.alloc() : memref<5x4xf64>
// CHECK: linalg.fill ins(%[[TMP_cst]] : f64) outs(%[[TMP_0]] : memref<5x4xf64>)
// CHECK: scf.for %[[TMP_arg2:.*]] = %[[TMP_c0]] to %[[TMP_c2]] step %[[TMP_c1]] {
// CHECK: scf.for %[[TMP_arg3:.*]] = %[[TMP_c0]] to %[[TMP_c4]] step %[[TMP_c1]] {
// CHECK: %[[TMP_12:.*]] = tensor.extract %[[TMP_arg0]][%[[TMP_arg2]], %[[TMP_arg3]]] : tensor<2x4xf64>
// CHECK: %[[TMP_13:.*]] = arith.cmpf une, %[[TMP_12]], %[[TMP_cst]] : f64
// CHECK: scf.if %[[TMP_13]] {
// CHECK: memref.store %[[TMP_12]], %[[TMP_0]][%[[TMP_arg2]], %[[TMP_arg3]]] : memref<5x4xf64>
// CHECK: }
// CHECK: }
// CHECK: }
// CHECK-DAG: %[[LvlTypes:.*]] = memref.alloca() : memref<2xi8>
// CHECK-DAG: %[[LvlTypesP:.*]] = memref.cast %[[LvlTypes]] : memref<2xi8> to memref<?xi8>
// CHECK-DAG: memref.store %[[TMP_c8_i8]], %[[LvlTypes]][%[[TMP_c0]]] : memref<2xi8>
// CHECK-DAG: memref.store %[[TMP_c8_i8]], %[[LvlTypes]][%[[TMP_c1]]] : memref<2xi8>
// CHECK-DAG: %[[DimSizes:.*]] = memref.alloca() : memref<2xindex>
// CHECK-DAG: %[[DimSizesP:.*]] = memref.cast %[[DimSizes]] : memref<2xindex> to memref<?xindex>
// CHECK-DAG: memref.store %[[TMP_c3]], %[[DimSizes]][%[[TMP_c0]]] : memref<2xindex>
// CHECK-DAG: memref.store %[[TMP_c4]], %[[DimSizes]][%[[TMP_c1]]] : memref<2xindex>
// CHECK-DAG: %[[LvlSizes:.*]] = memref.alloca() : memref<2xindex>
// CHECK-DAG: %[[LvlSizesP:.*]] = memref.cast %[[LvlSizes]] : memref<2xindex> to memref<?xindex>
// CHECK-DAG: %[[Iota:.*]] = memref.alloca() : memref<2xindex>
// CHECK-DAG: %[[IotaP:.*]] = memref.cast %[[Iota]] : memref<2xindex> to memref<?xindex>
// CHECK-DAG: memref.store %[[TMP_c0]], %[[Iota]][%[[TMP_c0]]] : memref<2xindex>
// CHECK-DAG: memref.store %[[TMP_c1]], %[[Iota]][%[[TMP_c1]]] : memref<2xindex>
// CHECK: %[[TMP_7:.*]] = call @newSparseTensor(%[[DimSizesP]], %[[LvlSizesP]], %[[LvlTypesP]], %[[IotaP]], %[[IotaP]], %[[TMP_c0_i32]], %[[TMP_c0_i32]], %[[TMP_c1_i32]], %[[TMP_c6_i32]], %[[TMP_arg1]])
// CHECK: %[[TMP_8:.*]] = memref.alloca() : memref<2xindex>
// CHECK: %[[TMP_9:.*]] = memref.cast %[[TMP_8]] : memref<2xindex> to memref<?xindex>
// CHECK: %[[TMP_10:.*]] = memref.alloca() : memref<f64>
// CHECK: scf.while : () -> () {
// CHECK: %[[TMP_12:.*]] = func.call @getNextF64(%[[TMP_7]], %[[TMP_9]], %[[TMP_10]]) : (!llvm.ptr<i8>, memref<?xindex>, memref<f64>) -> i1
// CHECK: scf.condition(%[[TMP_12]])
// CHECK: } do {
// CHECK: %[[TMP_12:.*]] = memref.load %[[TMP_8]][%[[TMP_c0]]] : memref<2xindex>
// CHECK: %[[TMP_13:.*]] = arith.addi %[[TMP_12]], %[[TMP_c2]] : index
// CHECK: %[[TMP_14:.*]] = memref.load %[[TMP_8]][%[[TMP_c1]]] : memref<2xindex>
// CHECK: %[[TMP_15:.*]] = memref.load %[[TMP_10]][] : memref<f64>
// CHECK: memref.store %[[TMP_15]], %[[TMP_0]][%[[TMP_13]], %[[TMP_14]]] : memref<5x4xf64>
// CHECK: scf.yield
// CHECK: }
// CHECK: call @delSparseTensorIteratorF64(%[[TMP_7]]) : (!llvm.ptr<i8>) -> ()
// CHECK: %[[TMP_11:.*]] = bufferization.to_tensor %[[TMP_0]] : memref<5x4xf64>
// CHECK: return %[[TMP_11]] : tensor<5x4xf64>
// CHECK: }
func.func @concat_mix_dense(%arg0: tensor<2x4xf64>, %arg1: tensor<3x4xf64, #SparseMatrix>) -> tensor<5x4xf64> {
%0 = sparse_tensor.concatenate %arg0, %arg1 {dimension = 0 : index}
: tensor<2x4xf64>, tensor<3x4xf64, #SparseMatrix> to tensor<5x4xf64>
return %0 : tensor<5x4xf64>
}
// CHECK-LABEL: func.func @concat_mix_sparse(
// CHECK-SAME: %[[TMP_arg0:.*]]: tensor<2x4xf64>,
// CHECK-SAME: %[[TMP_arg1:.*]]: !llvm.ptr<i8>)
// CHECK-DAG: %[[TMP_c2:.*]] = arith.constant 2 : index
// CHECK-DAG: %[[TMP_c2_i32:.*]] = arith.constant 2 : i32
// CHECK-DAG: %[[TMP_c6_i32:.*]] = arith.constant 6 : i32
// CHECK-DAG: %[[TMP_c3:.*]] = arith.constant 3 : index
// CHECK-DAG: %[[TMP_cst:.*]] = arith.constant 0.000000e+00 : f64
// CHECK-DAG: %[[TMP_c4_i32:.*]] = arith.constant 4 : i32
// CHECK-DAG: %[[TMP_c1_i32:.*]] = arith.constant 1 : i32
// CHECK-DAG: %[[TMP_c0_i32:.*]] = arith.constant 0 : i32
// CHECK-DAG: %[[TMP_c1:.*]] = arith.constant 1 : index
// CHECK-DAG: %[[TMP_c0:.*]] = arith.constant 0 : index
// CHECK-DAG: %[[TMP_c5:.*]] = arith.constant 5 : index
// CHECK-DAG: %[[TMP_c4:.*]] = arith.constant 4 : index
// CHECK-DAG: %[[TMP_c8_i8:.*]] = arith.constant 8 : i8
// CHECK-DAG: %[[LvlTypes_0:.*]] = memref.alloca() : memref<2xi8>
// CHECK-DAG: %[[LvlTypesP_0:.*]] = memref.cast %[[LvlTypes_0]] : memref<2xi8> to memref<?xi8>
// CHECK-DAG: memref.store %[[TMP_c8_i8]], %[[LvlTypes_0]][%[[TMP_c0]]] : memref<2xi8>
// CHECK-DAG: memref.store %[[TMP_c8_i8]], %[[LvlTypes_0]][%[[TMP_c1]]] : memref<2xi8>
// CHECK-DAG: %[[DimSizes_0:.*]] = memref.alloca() : memref<2xindex>
// CHECK-DAG: %[[DimSizesP_0:.*]] = memref.cast %[[DimSizes_0]] : memref<2xindex> to memref<?xindex>
// CHECK-DAG: memref.store %[[TMP_c5]], %[[DimSizes_0]][%[[TMP_c0]]] : memref<2xindex>
// CHECK-DAG: memref.store %[[TMP_c4]], %[[DimSizes_0]][%[[TMP_c1]]] : memref<2xindex>
// CHECK-DAG: %[[LvlSizes_0:.*]] = memref.alloca() : memref<2xindex>
// CHECK-DAG: %[[LvlSizesP_0:.*]] = memref.cast %[[LvlSizes_0]] : memref<2xindex> to memref<?xindex>
// CHECK-DAG: %[[Iota_0:.*]] = memref.alloca() : memref<2xindex>
// CHECK-DAG: %[[IotaP_0:.*]] = memref.cast %[[Iota_0]] : memref<2xindex> to memref<?xindex>
// CHECK-DAG: memref.store %[[TMP_c0]], %[[Iota_0]][%[[TMP_c0]]] : memref<2xindex>
// CHECK-DAG: memref.store %[[TMP_c1]], %[[Iota_0]][%[[TMP_c1]]] : memref<2xindex>
// CHECK-DAG: %[[NullPtr:.*]] = llvm.mlir.null : !llvm.ptr<i8>
// CHECK: %[[TMP_7:.*]] = call @newSparseTensor(%[[DimSizesP_0]], %[[LvlSizesP_0]], %[[LvlTypesP_0]], %[[IotaP_0]], %[[IotaP_0]], %[[TMP_c0_i32]], %[[TMP_c0_i32]], %[[TMP_c1_i32]], %[[TMP_c4_i32]], %[[NullPtr]])
// CHECK: %[[TMP_9:.*]] = memref.alloca() : memref<2xindex>
// CHECK: %[[TMP_10:.*]] = memref.cast %[[TMP_9]] : memref<2xindex> to memref<?xindex>
// CHECK: %[[TMP_8:.*]] = memref.alloca() : memref<f64>
// CHECK: scf.for %[[TMP_arg2:.*]] = %[[TMP_c0]] to %[[TMP_c2]] step %[[TMP_c1]] {
// CHECK: scf.for %[[TMP_arg3:.*]] = %[[TMP_c0]] to %[[TMP_c4]] step %[[TMP_c1]] {
// CHECK: memref.store %[[TMP_arg2]], %[[TMP_9]][%[[TMP_c0]]] : memref<2xindex>
// CHECK: memref.store %[[TMP_arg3]], %[[TMP_9]][%[[TMP_c1]]] : memref<2xindex>
// CHECK: %[[TMP_22:.*]] = tensor.extract %[[TMP_arg0]][%[[TMP_arg2]], %[[TMP_arg3]]] : tensor<2x4xf64>
// CHECK: %[[TMP_23:.*]] = arith.cmpf une, %[[TMP_22]], %[[TMP_cst]] : f64
// CHECK: scf.if %[[TMP_23]] {
// CHECK: memref.store %[[TMP_22]], %[[TMP_8]][] : memref<f64>
// CHECK: %[[TMP_24:.*]] = func.call @addEltF64(%[[TMP_7]], %[[TMP_8]], %[[TMP_10]], %[[IotaP_0]]) : (!llvm.ptr<i8>, memref<f64>, memref<?xindex>, memref<?xindex>) -> !llvm.ptr<i8>
// CHECK: }
// CHECK: }
// CHECK: }
// CHECK-DAG: %[[LvlTypes_1:.*]] = memref.alloca() : memref<2xi8>
// CHECK-DAG: %[[LvlTypesP_1:.*]] = memref.cast %[[LvlTypes_1]] : memref<2xi8> to memref<?xi8>
// CHECK-DAG: memref.store %[[TMP_c8_i8]], %[[LvlTypes_1]][%[[TMP_c0]]] : memref<2xi8>
// CHECK-DAG: memref.store %[[TMP_c8_i8]], %[[LvlTypes_1]][%[[TMP_c1]]] : memref<2xi8>
// CHECK-DAG: %[[DimSizes_1:.*]] = memref.alloca() : memref<2xindex>
// CHECK-DAG: %[[DimSizesP_1:.*]] = memref.cast %[[DimSizes_1]] : memref<2xindex> to memref<?xindex>
// CHECK-DAG: memref.store %[[TMP_c3]], %[[DimSizes_1]][%[[TMP_c0]]] : memref<2xindex>
// CHECK-DAG: memref.store %[[TMP_c4]], %[[DimSizes_1]][%[[TMP_c1]]] : memref<2xindex>
// CHECK-DAG: %[[LvlSizes_1:.*]] = memref.alloca() : memref<2xindex>
// CHECK-DAG: %[[LvlSizesP_1:.*]] = memref.cast %[[LvlSizes_1]] : memref<2xindex> to memref<?xindex>
// CHECK-DAG: %[[Iota_1:.*]] = memref.alloca() : memref<2xindex>
// CHECK-DAG: %[[IotaP_1:.*]] = memref.cast %[[Iota_1]] : memref<2xindex> to memref<?xindex>
// CHECK-DAG: memref.store %[[TMP_c0]], %[[Iota_1]][%[[TMP_c0]]] : memref<2xindex>
// CHECK-DAG: memref.store %[[TMP_c1]], %[[Iota_1]][%[[TMP_c1]]] : memref<2xindex>
// CHECK: %[[TMP_17:.*]] = call @newSparseTensor(%[[DimSizesP_1]], %[[LvlSizesP_1]], %[[LvlTypesP_1]], %[[IotaP_1]], %[[IotaP_1]], %[[TMP_c0_i32]], %[[TMP_c0_i32]], %[[TMP_c1_i32]], %[[TMP_c6_i32]], %[[TMP_arg1]])
// CHECK: %[[TMP_18:.*]] = memref.alloca() : memref<2xindex>
// CHECK: %[[TMP_19:.*]] = memref.cast %[[TMP_18]] : memref<2xindex> to memref<?xindex>
// CHECK: %[[TMP_20:.*]] = memref.alloca() : memref<f64>
// CHECK: scf.while : () -> () {
// CHECK: %[[TMP_22:.*]] = func.call @getNextF64(%[[TMP_17]], %[[TMP_19]], %[[TMP_20]]) : (!llvm.ptr<i8>, memref<?xindex>, memref<f64>) -> i1
// CHECK: scf.condition(%[[TMP_22]])
// CHECK: } do {
// CHECK: %[[TMP_22:.*]] = memref.load %[[TMP_18]][%[[TMP_c0]]] : memref<2xindex>
// CHECK: %[[TMP_23:.*]] = arith.addi %[[TMP_22]], %[[TMP_c2]] : index
// CHECK: %[[TMP_24:.*]] = memref.load %[[TMP_18]][%[[TMP_c1]]] : memref<2xindex>
// CHECK: memref.store %[[TMP_23]], %[[TMP_9]][%[[TMP_c0]]] : memref<2xindex>
// CHECK: memref.store %[[TMP_24]], %[[TMP_9]][%[[TMP_c1]]] : memref<2xindex>
// CHECK: %[[TMP_25:.*]] = func.call @addEltF64(%[[TMP_7]], %[[TMP_20]], %[[TMP_10]], %[[IotaP_0]]) : (!llvm.ptr<i8>, memref<f64>, memref<?xindex>, memref<?xindex>) -> !llvm.ptr<i8>
// CHECK: scf.yield
// CHECK: }
// CHECK: call @delSparseTensorIteratorF64(%[[TMP_17]]) : (!llvm.ptr<i8>) -> ()
// CHECK: %[[TMP_21:.*]] = call @newSparseTensor(%[[DimSizesP_0]], %[[LvlSizesP_0]], %[[LvlTypesP_0]], %[[IotaP_0]], %[[IotaP_0]], %[[TMP_c0_i32]], %[[TMP_c0_i32]], %[[TMP_c1_i32]], %[[TMP_c2_i32]], %[[TMP_7]])
// CHECK: call @delSparseTensorCOOF64(%[[TMP_7]]) : (!llvm.ptr<i8>) -> ()
// CHECK: return %[[TMP_21]] : !llvm.ptr<i8>
// CHECK: }
func.func @concat_mix_sparse(%arg0: tensor<2x4xf64>, %arg1: tensor<3x4xf64, #SparseMatrix>) -> tensor<5x4xf64, #SparseMatrix> {
%0 = sparse_tensor.concatenate %arg0, %arg1 {dimension = 0 : index}
: tensor<2x4xf64>, tensor<3x4xf64, #SparseMatrix> to tensor<5x4xf64, #SparseMatrix>
return %0 : tensor<5x4xf64, #SparseMatrix>
}
// CHECK-LABEL: func.func @concat_mix_sparse_perm_dim1(
// CHECK-SAME: %[[TMP_arg0:.*]]: tensor<4x2xf64>,
// CHECK-SAME: %[[TMP_arg1:.*]]: !llvm.ptr<i8>)
// CHECK-DAG: %[[TMP_c2:.*]] = arith.constant 2 : index
// CHECK-DAG: %[[TMP_c2_i32:.*]] = arith.constant 2 : i32
// CHECK-DAG: %[[TMP_c6_i32:.*]] = arith.constant 6 : i32
// CHECK-DAG: %[[TMP_c3:.*]] = arith.constant 3 : index
// CHECK-DAG: %[[TMP_cst:.*]] = arith.constant 0.000000e+00 : f64
// CHECK-DAG: %[[TMP_c4_i32:.*]] = arith.constant 4 : i32
// CHECK-DAG: %[[TMP_c1_i32:.*]] = arith.constant 1 : i32
// CHECK-DAG: %[[TMP_c0_i32:.*]] = arith.constant 0 : i32
// CHECK-DAG: %[[TMP_c1:.*]] = arith.constant 1 : index
// CHECK-DAG: %[[TMP_c0:.*]] = arith.constant 0 : index
// CHECK-DAG: %[[TMP_c4:.*]] = arith.constant 4 : index
// CHECK-DAG: %[[TMP_c5:.*]] = arith.constant 5 : index
// CHECK-DAG: %[[TMP_c8_i8:.*]] = arith.constant 8 : i8
// CHECK-DAG: %[[LvlTypes_0:.*]] = memref.alloca() : memref<2xi8>
// CHECK-DAG: %[[LvlTypesP_0:.*]] = memref.cast %[[LvlTypes_0]] : memref<2xi8> to memref<?xi8>
// CHECK-DAG: memref.store %[[TMP_c8_i8]], %[[LvlTypes_0]][%[[TMP_c0]]] : memref<2xi8>
// CHECK-DAG: memref.store %[[TMP_c8_i8]], %[[LvlTypes_0]][%[[TMP_c1]]] : memref<2xi8>
// CHECK-DAG: %[[DimSizes_0:.*]] = memref.alloca() : memref<2xindex>
// CHECK-DAG: %[[DimSizesP_0:.*]] = memref.cast %[[DimSizes_0]] : memref<2xindex> to memref<?xindex>
// CHECK-DAG: memref.store %[[TMP_c4]], %[[DimSizes_0]][%[[TMP_c0]]] : memref<2xindex>
// CHECK-DAG: memref.store %[[TMP_c5]], %[[DimSizes_0]][%[[TMP_c1]]] : memref<2xindex>
// CHECK-DAG: %[[LvlSizes_0:.*]] = memref.alloca() : memref<2xindex>
// CHECK-DAG: %[[LvlSizesP_0:.*]] = memref.cast %[[LvlSizes_0]] : memref<2xindex> to memref<?xindex>
// CHECK-DAG: %[[Lvl2Dim_0:.*]] = memref.alloca() : memref<2xindex>
// CHECK-DAG: %[[Lvl2DimP_0:.*]] = memref.cast %[[Lvl2Dim_0]] : memref<2xindex> to memref<?xindex>
// CHECK-DAG: %[[Dim2Lvl_0:.*]] = memref.alloca() : memref<2xindex>
// CHECK-DAG: %[[Dim2LvlP_0:.*]] = memref.cast %[[Dim2Lvl_0]] : memref<2xindex> to memref<?xindex>
// CHECK-DAG: memref.store %[[TMP_c1]], %[[Dim2Lvl_0]][%[[TMP_c0]]] : memref<2xindex>
// CHECK-DAG: memref.store %[[TMP_c0]], %[[Dim2Lvl_0]][%[[TMP_c1]]] : memref<2xindex>
// CHECK-DAG: %[[NullPtr:.*]] = llvm.mlir.null : !llvm.ptr<i8>
// CHECK: %[[TMP_7:.*]] = call @newSparseTensor(%[[DimSizesP_0]], %[[LvlSizesP_0]], %[[LvlTypesP_0]], %[[Lvl2DimP_0]], %[[Dim2LvlP_0]], %[[TMP_c0_i32]], %[[TMP_c0_i32]], %[[TMP_c1_i32]], %[[TMP_c4_i32]], %[[NullPtr]])
// CHECK: %[[TMP_9:.*]] = memref.alloca() : memref<2xindex>
// CHECK: %[[TMP_10:.*]] = memref.cast %[[TMP_9]] : memref<2xindex> to memref<?xindex>
// CHECK: %[[TMP_8:.*]] = memref.alloca() : memref<f64>
// CHECK: scf.for %[[TMP_arg2:.*]] = %[[TMP_c0]] to %[[TMP_c4]] step %[[TMP_c1]] {
// CHECK: scf.for %[[TMP_arg3:.*]] = %[[TMP_c0]] to %[[TMP_c2]] step %[[TMP_c1]] {
// CHECK: memref.store %[[TMP_arg2]], %[[TMP_9]][%[[TMP_c0]]] : memref<2xindex>
// CHECK: memref.store %[[TMP_arg3]], %[[TMP_9]][%[[TMP_c1]]] : memref<2xindex>
// CHECK: %[[TMP_22:.*]] = tensor.extract %[[TMP_arg0]][%[[TMP_arg2]], %[[TMP_arg3]]] : tensor<4x2xf64>
// CHECK: %[[TMP_23:.*]] = arith.cmpf une, %[[TMP_22]], %[[TMP_cst]] : f64
// CHECK: scf.if %[[TMP_23]] {
// CHECK: memref.store %[[TMP_22]], %[[TMP_8]][] : memref<f64>
// CHECK: %[[TMP_24:.*]] = func.call @addEltF64(%[[TMP_7]], %[[TMP_8]], %[[TMP_10]], %[[Dim2LvlP_0]]) : (!llvm.ptr<i8>, memref<f64>, memref<?xindex>, memref<?xindex>) -> !llvm.ptr<i8>
// CHECK: }
// CHECK: }
// CHECK: }
// CHECK-DAG: %[[LvlTypes_1:.*]] = memref.alloca() : memref<2xi8>
// CHECK-DAG: %[[LvlTypesP_1:.*]] = memref.cast %[[LvlTypes_1]] : memref<2xi8> to memref<?xi8>
// CHECK-DAG: memref.store %[[TMP_c8_i8]], %[[LvlTypes_1]][%[[TMP_c0]]] : memref<2xi8>
// CHECK-DAG: memref.store %[[TMP_c8_i8]], %[[LvlTypes_1]][%[[TMP_c1]]] : memref<2xi8>
// CHECK-DAG: %[[DimSizes_1:.*]] = memref.alloca() : memref<2xindex>
// CHECK-DAG: %[[DimSizesP_1:.*]] = memref.cast %[[DimSizes_1]] : memref<2xindex> to memref<?xindex>
// CHECK-DAG: memref.store %[[TMP_c4]], %[[DimSizes_1]][%[[TMP_c0]]] : memref<2xindex>
// CHECK-DAG: memref.store %[[TMP_c3]], %[[DimSizes_1]][%[[TMP_c1]]] : memref<2xindex>
// CHECK-DAG: %[[LvlSizes_1:.*]] = memref.alloca() : memref<2xindex>
// CHECK-DAG: %[[LvlSizesP_1:.*]] = memref.cast %[[LvlSizes_1]] : memref<2xindex> to memref<?xindex>
// CHECK-DAG: %[[Iota_1:.*]] = memref.alloca() : memref<2xindex>
// CHECK-DAG: %[[IotaP_1:.*]] = memref.cast %[[Iota_1]] : memref<2xindex> to memref<?xindex>
// CHECK-DAG: memref.store %[[TMP_c0]], %[[Iota_1]][%[[TMP_c0]]] : memref<2xindex>
// CHECK-DAG: memref.store %[[TMP_c1]], %[[Iota_1]][%[[TMP_c1]]] : memref<2xindex>
// CHECK: %[[TMP_17:.*]] = call @newSparseTensor(%[[DimSizesP_1]], %[[LvlSizesP_1]], %[[LvlTypesP_1]], %[[IotaP_1]], %[[IotaP_1]], %[[TMP_c0_i32]], %[[TMP_c0_i32]], %[[TMP_c1_i32]], %[[TMP_c6_i32]], %[[TMP_arg1]])
// CHECK: %[[TMP_18:.*]] = memref.alloca() : memref<2xindex>
// CHECK: %[[TMP_19:.*]] = memref.cast %[[TMP_18]] : memref<2xindex> to memref<?xindex>
// CHECK: %[[TMP_20:.*]] = memref.alloca() : memref<f64>
// CHECK: scf.while : () -> () {
// CHECK: %[[TMP_22:.*]] = func.call @getNextF64(%[[TMP_17]], %[[TMP_19]], %[[TMP_20]]) : (!llvm.ptr<i8>, memref<?xindex>, memref<f64>) -> i1
// CHECK: scf.condition(%[[TMP_22]])
// CHECK: } do {
// CHECK: %[[TMP_22:.*]] = memref.load %[[TMP_18]][%[[TMP_c0]]] : memref<2xindex>
// CHECK: %[[TMP_23:.*]] = memref.load %[[TMP_18]][%[[TMP_c1]]] : memref<2xindex>
// CHECK: %[[TMP_24:.*]] = arith.addi %[[TMP_23]], %[[TMP_c2]] : index
// CHECK: memref.store %[[TMP_22]], %[[TMP_9]][%[[TMP_c0]]] : memref<2xindex>
// CHECK: memref.store %[[TMP_24]], %[[TMP_9]][%[[TMP_c1]]] : memref<2xindex>
// CHECK: %[[TMP_25:.*]] = func.call @addEltF64(%[[TMP_7]], %[[TMP_20]], %[[TMP_10]], %[[Dim2LvlP_0]]) : (!llvm.ptr<i8>, memref<f64>, memref<?xindex>, memref<?xindex>) -> !llvm.ptr<i8>
// CHECK: scf.yield
// CHECK: }
// CHECK: call @delSparseTensorIteratorF64(%[[TMP_17]]) : (!llvm.ptr<i8>) -> ()
// CHECK: %[[TMP_21:.*]] = call @newSparseTensor(%[[DimSizesP_0]], %[[LvlSizesP_0]], %[[LvlTypesP_0]], %[[Lvl2DimP_0]], %[[Dim2LvlP_0]], %[[TMP_c0_i32]], %[[TMP_c0_i32]], %[[TMP_c1_i32]], %[[TMP_c2_i32]], %[[TMP_7]])
// CHECK: call @delSparseTensorCOOF64(%[[TMP_7]]) : (!llvm.ptr<i8>) -> ()
// CHECK: return %[[TMP_21]] : !llvm.ptr<i8>
// CHECK: }
func.func @concat_mix_sparse_perm_dim1(%arg0: tensor<4x2xf64>, %arg1: tensor<4x3xf64, #SparseMatrix_P>) -> tensor<4x5xf64, #SparseMatrix_P> {
%0 = sparse_tensor.concatenate %arg0, %arg1 {dimension = 1 : index}
: tensor<4x2xf64>, tensor<4x3xf64, #SparseMatrix_P> to tensor<4x5xf64, #SparseMatrix_P>
return %0 : tensor<4x5xf64, #SparseMatrix_P>
}
// CHECK-LABEL: func.func @concat_mix_dense_perm_dim1(
// CHECK-SAME: %[[TMP_arg0:.*]]: tensor<4x2xf64>,
// CHECK-SAME: %[[TMP_arg1:.*]]: !llvm.ptr<i8>)
// CHECK-DAG: %[[TMP_c2:.*]] = arith.constant 2 : index
// CHECK-DAG: %[[TMP_c6_i32:.*]] = arith.constant 6 : i32
// CHECK-DAG: %[[TMP_c1_i32:.*]] = arith.constant 1 : i32
// CHECK-DAG: %[[TMP_c0_i32:.*]] = arith.constant 0 : i32
// CHECK-DAG: %[[TMP_c8_i8:.*]] = arith.constant 8 : i8
// CHECK-DAG: %[[TMP_c3:.*]] = arith.constant 3 : index
// CHECK-DAG: %[[TMP_c1:.*]] = arith.constant 1 : index
// CHECK-DAG: %[[TMP_cst:.*]] = arith.constant 0.000000e+00 : f64
// CHECK-DAG: %[[TMP_c0:.*]] = arith.constant 0 : index
// CHECK-DAG: %[[TMP_c4:.*]] = arith.constant 4 : index
// CHECK: %[[TMP_0:.*]] = memref.alloc() : memref<4x5xf64>
// CHECK: linalg.fill ins(%[[TMP_cst]] : f64) outs(%[[TMP_0]] : memref<4x5xf64>)
// CHECK: scf.for %[[TMP_arg2:.*]] = %[[TMP_c0]] to %[[TMP_c4]] step %[[TMP_c1]] {
// CHECK: scf.for %[[TMP_arg3:.*]] = %[[TMP_c0]] to %[[TMP_c2]] step %[[TMP_c1]] {
// CHECK: %[[TMP_12:.*]] = tensor.extract %[[TMP_arg0]][%[[TMP_arg2]], %[[TMP_arg3]]] : tensor<4x2xf64>
// CHECK: %[[TMP_13:.*]] = arith.cmpf une, %[[TMP_12]], %[[TMP_cst]] : f64
// CHECK: scf.if %[[TMP_13]] {
// CHECK: memref.store %[[TMP_12]], %[[TMP_0]][%[[TMP_arg2]], %[[TMP_arg3]]] : memref<4x5xf64>
// CHECK: }
// CHECK: }
// CHECK: }
// CHECK-DAG: %[[LvlTypes:.*]] = memref.alloca() : memref<2xi8>
// CHECK-DAG: %[[LvlTypesP:.*]] = memref.cast %[[LvlTypes]] : memref<2xi8> to memref<?xi8>
// CHECK-DAG: memref.store %[[TMP_c8_i8]], %[[LvlTypes]][%[[TMP_c0]]] : memref<2xi8>
// CHECK-DAG: memref.store %[[TMP_c8_i8]], %[[LvlTypes]][%[[TMP_c1]]] : memref<2xi8>
// CHECK-DAG: %[[DimSizes:.*]] = memref.alloca() : memref<2xindex>
// CHECK-DAG: %[[DimSizesP:.*]] = memref.cast %[[DimSizes]] : memref<2xindex> to memref<?xindex>
// CHECK-DAG: memref.store %[[TMP_c4]], %[[DimSizes]][%[[TMP_c0]]] : memref<2xindex>
// CHECK-DAG: memref.store %[[TMP_c3]], %[[DimSizes]][%[[TMP_c1]]] : memref<2xindex>
// CHECK-DAG: %[[LvlSizes:.*]] = memref.alloca() : memref<2xindex>
// CHECK-DAG: %[[LvlSizesP:.*]] = memref.cast %[[LvlSizes]] : memref<2xindex> to memref<?xindex>
// CHECK-DAG: %[[Iota:.*]] = memref.alloca() : memref<2xindex>
// CHECK-DAG: %[[IotaP:.*]] = memref.cast %[[Iota]] : memref<2xindex> to memref<?xindex>
// CHECK-DAG: memref.store %[[TMP_c0]], %[[Iota]][%[[TMP_c0]]] : memref<2xindex>
// CHECK-DAG: memref.store %[[TMP_c1]], %[[Iota]][%[[TMP_c1]]] : memref<2xindex>
// CHECK: %[[TMP_7:.*]] = call @newSparseTensor(%[[DimSizesP]], %[[LvlSizesP]], %[[LvlTypesP]], %[[IotaP]], %[[IotaP]], %[[TMP_c0_i32]], %[[TMP_c0_i32]], %[[TMP_c1_i32]], %[[TMP_c6_i32]], %[[TMP_arg1]])
// CHECK: %[[TMP_8:.*]] = memref.alloca() : memref<2xindex>
// CHECK: %[[TMP_9:.*]] = memref.cast %[[TMP_8]] : memref<2xindex> to memref<?xindex>
// CHECK: %[[TMP_10:.*]] = memref.alloca() : memref<f64>
// CHECK: scf.while : () -> () {
// CHECK: %[[TMP_12:.*]] = func.call @getNextF64(%[[TMP_7]], %[[TMP_9]], %[[TMP_10]]) : (!llvm.ptr<i8>, memref<?xindex>, memref<f64>) -> i1
// CHECK: scf.condition(%[[TMP_12]])
// CHECK: } do {
// CHECK: %[[TMP_12:.*]] = memref.load %[[TMP_8]][%[[TMP_c0]]] : memref<2xindex>
// CHECK: %[[TMP_13:.*]] = memref.load %[[TMP_8]][%[[TMP_c1]]] : memref<2xindex>
// CHECK: %[[TMP_14:.*]] = arith.addi %[[TMP_13]], %[[TMP_c2]] : index
// CHECK: %[[TMP_15:.*]] = memref.load %[[TMP_10]][] : memref<f64>
// CHECK: memref.store %[[TMP_15]], %[[TMP_0]][%[[TMP_12]], %[[TMP_14]]] : memref<4x5xf64>
// CHECK: scf.yield
// CHECK: }
// CHECK: call @delSparseTensorIteratorF64(%[[TMP_7]]) : (!llvm.ptr<i8>) -> ()
// CHECK: %[[TMP_11:.*]] = bufferization.to_tensor %[[TMP_0]] : memref<4x5xf64>
// CHECK: return %[[TMP_11]] : tensor<4x5xf64>
// CHECK: }
func.func @concat_mix_dense_perm_dim1(%arg0: tensor<4x2xf64>, %arg1: tensor<4x3xf64, #SparseMatrix_P>) -> tensor<4x5xf64> {
%0 = sparse_tensor.concatenate %arg0, %arg1 {dimension = 1 : index}
: tensor<4x2xf64>, tensor<4x3xf64, #SparseMatrix_P> to tensor<4x5xf64>
return %0 : tensor<4x5xf64>
}
// CHECK-LABEL: func.func @concat_mix_dense_perm_dim1_dyn(
// CHECK-SAME: %[[TMP_arg0:.*]]: tensor<3x2xf64>,
// CHECK-SAME: %[[TMP_arg1:.*]]: !llvm.ptr<i8>)
// CHECK-DAG: %[[TMP_c2:.*]] = arith.constant 2 : index
// CHECK-DAG: %[[TMP_c6_i32:.*]] = arith.constant 6 : i32
// CHECK-DAG: %[[TMP_c1_i32:.*]] = arith.constant 1 : i32
// CHECK-DAG: %[[TMP_c0_i32:.*]] = arith.constant 0 : i32
// CHECK-DAG: %[[TMP_c8_i8:.*]] = arith.constant 8 : i8
// CHECK-DAG: %[[TMP_cst:.*]] = arith.constant 0.000000e+00 : f64
// CHECK-DAG: %[[TMP_c0:.*]] = arith.constant 0 : index
// CHECK-DAG: %[[TMP_c3:.*]] = arith.constant 3 : index
// CHECK-DAG: %[[TMP_c1:.*]] = arith.constant 1 : index
// CHECK: %[[TMP_0:.*]] = memref.alloc() : memref<3x5xf64>
// CHECK: %[[TMP_1:.*]] = memref.cast %[[TMP_0]] : memref<3x5xf64> to memref<?x?xf64>
// CHECK: linalg.fill ins(%[[TMP_cst]] : f64) outs(%[[TMP_0]] : memref<3x5xf64>)
// CHECK: scf.for %[[TMP_arg2:.*]] = %[[TMP_c0]] to %[[TMP_c3]] step %[[TMP_c1]] {
// CHECK: scf.for %[[TMP_arg3:.*]] = %[[TMP_c0]] to %[[TMP_c2]] step %[[TMP_c1]] {
// CHECK: %[[TMP_13:.*]] = tensor.extract %[[TMP_arg0]][%[[TMP_arg2]], %[[TMP_arg3]]] : tensor<3x2xf64>
// CHECK: %[[TMP_14:.*]] = arith.cmpf une, %[[TMP_13]], %[[TMP_cst]] : f64
// CHECK: scf.if %[[TMP_14]] {
// CHECK: memref.store %[[TMP_13]], %[[TMP_0]][%[[TMP_arg2]], %[[TMP_arg3]]] : memref<3x5xf64>
// CHECK: }
// CHECK: }
// CHECK: }
// CHECK-DAG: %[[LvlTypes:.*]] = memref.alloca() : memref<2xi8>
// CHECK-DAG: %[[LvlTypesP:.*]] = memref.cast %[[LvlTypes]] : memref<2xi8> to memref<?xi8>
// CHECK-DAG: memref.store %[[TMP_c8_i8]], %[[LvlTypes]][%[[TMP_c0]]] : memref<2xi8>
// CHECK-DAG: memref.store %[[TMP_c8_i8]], %[[LvlTypes]][%[[TMP_c1]]] : memref<2xi8>
// CHECK-DAG: %[[DimSizes:.*]] = memref.alloca() : memref<2xindex>
// CHECK-DAG: %[[DimSizesP:.*]] = memref.cast %[[DimSizes]] : memref<2xindex> to memref<?xindex>
// CHECK-DAG: memref.store %[[TMP_c3]], %[[DimSizes]][%[[TMP_c0]]] : memref<2xindex>
// CHECK-DAG: memref.store %[[TMP_c3]], %[[DimSizes]][%[[TMP_c1]]] : memref<2xindex>
// CHECK-DAG: %[[LvlSizes:.*]] = memref.alloca() : memref<2xindex>
// CHECK-DAG: %[[LvlSizesP:.*]] = memref.cast %[[LvlSizes]] : memref<2xindex> to memref<?xindex>
// CHECK-DAG: %[[Iota:.*]] = memref.alloca() : memref<2xindex>
// CHECK-DAG: %[[IotaP:.*]] = memref.cast %[[Iota]] : memref<2xindex> to memref<?xindex>
// CHECK-DAG: memref.store %[[TMP_c0]], %[[Iota]][%[[TMP_c0]]] : memref<2xindex>
// CHECK-DAG: memref.store %[[TMP_c1]], %[[Iota]][%[[TMP_c1]]] : memref<2xindex>
// CHECK: %[[TMP_8:.*]] = call @newSparseTensor(%[[DimSizesP]], %[[LvlSizesP]], %[[LvlTypesP]], %[[IotaP]], %[[IotaP]], %[[TMP_c0_i32]], %[[TMP_c0_i32]], %[[TMP_c1_i32]], %[[TMP_c6_i32]], %[[TMP_arg1]])
// CHECK: %[[TMP_9:.*]] = memref.alloca() : memref<2xindex>
// CHECK: %[[TMP_10:.*]] = memref.cast %[[TMP_9]] : memref<2xindex> to memref<?xindex>
// CHECK: %[[TMP_11:.*]] = memref.alloca() : memref<f64>
// CHECK: scf.while : () -> () {
// CHECK: %[[TMP_13:.*]] = func.call @getNextF64(%[[TMP_8]], %[[TMP_10]], %[[TMP_11]]) : (!llvm.ptr<i8>, memref<?xindex>, memref<f64>) -> i1
// CHECK: scf.condition(%[[TMP_13]])
// CHECK: } do {
// CHECK: %[[TMP_13:.*]] = memref.load %[[TMP_9]][%[[TMP_c0]]] : memref<2xindex>
// CHECK: %[[TMP_14:.*]] = memref.load %[[TMP_9]][%[[TMP_c1]]] : memref<2xindex>
// CHECK: %[[TMP_15:.*]] = arith.addi %[[TMP_14]], %[[TMP_c2]] : index
// CHECK: %[[TMP_16:.*]] = memref.load %[[TMP_11]][] : memref<f64>
// CHECK: memref.store %[[TMP_16]], %[[TMP_0]][%[[TMP_13]], %[[TMP_15]]] : memref<3x5xf64>
// CHECK: scf.yield
// CHECK: }
// CHECK: call @delSparseTensorIteratorF64(%[[TMP_8]]) : (!llvm.ptr<i8>) -> ()
// CHECK: %[[TMP_12:.*]] = bufferization.to_tensor %[[TMP_1]] : memref<?x?xf64>
// CHECK: return %[[TMP_12]] : tensor<?x?xf64>
// CHECK: }
func.func @concat_mix_dense_perm_dim1_dyn(%arg0: tensor<3x2xf64>, %arg1: tensor<3x3xf64, #SparseMatrix>) -> tensor<?x?xf64> {
%0 = sparse_tensor.concatenate %arg0, %arg1 {dimension = 1 : index}
: tensor<3x2xf64>, tensor<3x3xf64, #SparseMatrix> to tensor<?x?xf64>
return %0 : tensor<?x?xf64>
}
// CHECK-LABEL: func.func @concat_annotated_dense(
// CHECK-SAME: %[[TMP_arg0:.*]]: tensor<4x2xf64>,
// CHECK-SAME: %[[TMP_arg1:.*]]: !llvm.ptr<i8>)
// CHECK-DAG: %[[TMP_c2:.*]] = arith.constant 2 : index
// CHECK-DAG: %[[TMP_c6_i32:.*]] = arith.constant 6 : i32
// CHECK-DAG: %[[TMP_c4_i8:.*]] = arith.constant 4 : i8
// CHECK-DAG: %[[TMP_c8_i8:.*]] = arith.constant 8 : i8
// CHECK-DAG: %[[TMP_c3:.*]] = arith.constant 3 : index
// CHECK-DAG: %[[TMP_cst:.*]] = arith.constant 0.000000e+00 : f64
// CHECK-DAG: %[[TMP_c1_i32:.*]] = arith.constant 1 : i32
// CHECK-DAG: %[[TMP_c0_i32:.*]] = arith.constant 0 : i32
// CHECK-DAG: %[[TMP_c1:.*]] = arith.constant 1 : index
// CHECK-DAG: %[[TMP_c0:.*]] = arith.constant 0 : index
// CHECK-DAG: %[[TMP_c4:.*]] = arith.constant 4 : index
// CHECK-DAG: %[[TMP_c5:.*]] = arith.constant 5 : index
// CHECK-DAG: %[[LvlTypes_0:.*]] = memref.alloca() : memref<2xi8>
// CHECK-DAG: %[[LvlTypesP_0:.*]] = memref.cast %[[LvlTypes_0]] : memref<2xi8> to memref<?xi8>
// CHECK-DAG: memref.store %[[TMP_c4_i8]], %[[LvlTypes_0]][%[[TMP_c0]]] : memref<2xi8>
// CHECK-DAG: memref.store %[[TMP_c4_i8]], %[[LvlTypes_0]][%[[TMP_c1]]] : memref<2xi8>
// CHECK-DAG: %[[DimSizes_0:.*]] = memref.alloca() : memref<2xindex>
// CHECK-DAG: %[[DimSizesP_0:.*]] = memref.cast %[[DimSizes_0]] : memref<2xindex> to memref<?xindex>
// CHECK-DAG: memref.store %[[TMP_c4]], %[[DimSizes_0]][%[[TMP_c0]]] : memref<2xindex>
// CHECK-DAG: memref.store %[[TMP_c5]], %[[DimSizes_0]][%[[TMP_c1]]] : memref<2xindex>
// CHECK-DAG: %[[LvlSizes_0:.*]] = memref.alloca() : memref<2xindex>
// CHECK-DAG: %[[LvlSizesP_0:.*]] = memref.cast %[[LvlSizes_0]] : memref<2xindex> to memref<?xindex>
// CHECK-DAG: %[[Lvl2Dim_0:.*]] = memref.alloca() : memref<2xindex>
// CHECK-DAG: %[[Lvl2DimP_0:.*]] = memref.cast %[[Lvl2Dim_0]] : memref<2xindex> to memref<?xindex>
// CHECK-DAG: %[[Dim2Lvl_0:.*]] = memref.alloca() : memref<2xindex>
// CHECK-DAG: %[[Dim2LvlP_0:.*]] = memref.cast %[[Dim2Lvl_0]] : memref<2xindex> to memref<?xindex>
// CHECK-DAG: memref.store %[[TMP_c1]], %[[Dim2Lvl_0]][%[[TMP_c0]]] : memref<2xindex>
// CHECK-DAG: memref.store %[[TMP_c0]], %[[Dim2Lvl_0]][%[[TMP_c1]]] : memref<2xindex>
// CHECK-DAG: %[[NullPtr:.*]] = llvm.mlir.null : !llvm.ptr<i8>
// CHECK: %[[TMP_7:.*]] = call @newSparseTensor(%[[DimSizesP_0]], %[[LvlSizesP_0]], %[[LvlTypesP_0]], %[[Lvl2DimP_0]], %[[Dim2LvlP_0]], %[[TMP_c0_i32]], %[[TMP_c0_i32]], %[[TMP_c1_i32]], %[[TMP_c0_i32]], %[[NullPtr]])
// CHECK: %[[Values_r:.*]] = call @sparseValuesF64(%[[TMP_7]]) : (!llvm.ptr<i8>) -> memref<?xf64>
// CHECK: %[[Values:.*]] = memref.reshape %[[Values_r]]
// CHECK: scf.for %[[TMP_arg2:.*]] = %[[TMP_c0]] to %[[TMP_c4]] step %[[TMP_c1]] {
// CHECK: scf.for %[[TMP_arg3:.*]] = %[[TMP_c0]] to %[[TMP_c2]] step %[[TMP_c1]] {
// CHECK: %[[TMP_22:.*]] = tensor.extract %[[TMP_arg0]][%[[TMP_arg2]], %[[TMP_arg3]]] : tensor<4x2xf64>
// CHECK: %[[TMP_23:.*]] = arith.cmpf une, %[[TMP_22]], %[[TMP_cst]] : f64
// CHECK: scf.if %[[TMP_23]] {
// CHECK: memref.store %[[TMP_22]], %[[Values]][%[[TMP_arg3]], %[[TMP_arg2]]] : memref<?x?xf64>
// CHECK: }
// CHECK: }
// CHECK: }
// CHECK-DAG: %[[LvlTypes_1:.*]] = memref.alloca() : memref<2xi8>
// CHECK-DAG: %[[LvlTypesP_1:.*]] = memref.cast %[[LvlTypes_1]] : memref<2xi8> to memref<?xi8>
// CHECK-DAG: memref.store %[[TMP_c8_i8]], %[[LvlTypes_1]][%[[TMP_c0]]] : memref<2xi8>
// CHECK-DAG: memref.store %[[TMP_c8_i8]], %[[LvlTypes_1]][%[[TMP_c1]]] : memref<2xi8>
// CHECK-DAG: %[[DimSizes_1:.*]] = memref.alloca() : memref<2xindex>
// CHECK-DAG: %[[DimSizesP_1:.*]] = memref.cast %[[DimSizes_1]] : memref<2xindex> to memref<?xindex>
// CHECK-DAG: memref.store %[[TMP_c4]], %[[DimSizes_1]][%[[TMP_c0]]] : memref<2xindex>
// CHECK-DAG: memref.store %[[TMP_c3]], %[[DimSizes_1]][%[[TMP_c1]]] : memref<2xindex>
// CHECK-DAG: %[[LvlSizes_1:.*]] = memref.alloca() : memref<2xindex>
// CHECK-DAG: %[[LvlSizesP_1:.*]] = memref.cast %[[LvlSizes_1]] : memref<2xindex> to memref<?xindex>
// CHECK-DAG: %[[Iota_1:.*]] = memref.alloca() : memref<2xindex>
// CHECK-DAG: %[[IotaP_1:.*]] = memref.cast %[[Iota_1]] : memref<2xindex> to memref<?xindex>
// CHECK-DAG: memref.store %[[TMP_c0]], %[[Iota_1]][%[[TMP_c0]]] : memref<2xindex>
// CHECK-DAG: memref.store %[[TMP_c1]], %[[Iota_1]][%[[TMP_c1]]] : memref<2xindex>
// CHECK: %[[TMP_17:.*]] = call @newSparseTensor(%[[DimSizesP_1]], %[[LvlSizesP_1]], %[[LvlTypesP_1]], %[[IotaP_1]], %[[IotaP_1]], %[[TMP_c0_i32]], %[[TMP_c0_i32]], %[[TMP_c1_i32]], %[[TMP_c6_i32]], %[[TMP_arg1]])
// CHECK: %[[TMP_18:.*]] = memref.alloca() : memref<2xindex>
// CHECK: %[[TMP_19:.*]] = memref.cast %[[TMP_18]] : memref<2xindex> to memref<?xindex>
// CHECK: %[[TMP_20:.*]] = memref.alloca() : memref<f64>
// CHECK: scf.while : () -> () {
// CHECK: %[[TMP_22:.*]] = func.call @getNextF64(%[[TMP_17]], %[[TMP_19]], %[[TMP_20]]) : (!llvm.ptr<i8>, memref<?xindex>, memref<f64>) -> i1
// CHECK: scf.condition(%[[TMP_22]])
// CHECK: } do {
// CHECK: %[[TMP_22:.*]] = memref.load %[[TMP_18]][%[[TMP_c0]]] : memref<2xindex>
// CHECK: %[[TMP_23:.*]] = memref.load %[[TMP_18]][%[[TMP_c1]]] : memref<2xindex>
// CHECK: %[[TMP_24:.*]] = arith.addi %[[TMP_23]], %[[TMP_c2]] : index
// CHECK: %[[TMP_25:.*]] = memref.load %[[TMP_20]][] : memref<f64>
// CHECK: memref.store %[[TMP_25]], %[[Values]][%[[TMP_24]], %[[TMP_22]]] : memref<?x?xf64>
// CHECK: scf.yield
// CHECK: }
// CHECK: call @delSparseTensorIteratorF64(%[[TMP_17]]) : (!llvm.ptr<i8>) -> ()
// CHECK: return %[[TMP_7]] : !llvm.ptr<i8>
// CHECK: }
func.func @concat_annotated_dense(%arg0: tensor<4x2xf64>, %arg1: tensor<4x3xf64, #SparseMatrix_P>) -> tensor<4x5xf64, #SparseMatrix_D_P> {
%0 = sparse_tensor.concatenate %arg0, %arg1 {dimension = 1 : index}
: tensor<4x2xf64>, tensor<4x3xf64, #SparseMatrix_P> to tensor<4x5xf64, #SparseMatrix_D_P>
return %0 : tensor<4x5xf64, #SparseMatrix_D_P>
}
|