File: sparse_concat.mlir

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (462 lines) | stat: -rw-r--r-- 34,730 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
// RUN: mlir-opt %s --sparse-tensor-conversion --canonicalize --cse | FileCheck %s

#SparseMatrix = #sparse_tensor.encoding<{lvlTypes = ["compressed", "compressed"]}>

#SparseMatrix_P = #sparse_tensor.encoding<{
  lvlTypes = [ "compressed", "compressed" ],
  dimToLvl = affine_map<(i,j) -> (j,i)>
}>

#SparseMatrix_D_P = #sparse_tensor.encoding<{
  lvlTypes = [ "dense", "dense" ],
  dimToLvl = affine_map<(i,j) -> (j,i)>
}>

// CHECK-LABEL: func.func @concat_mix_dense(
// CHECK-SAME:    %[[TMP_arg0:.*]]: tensor<2x4xf64>,
// CHECK-SAME:    %[[TMP_arg1:.*]]: !llvm.ptr<i8>)
// CHECK-DAG:     %[[TMP_c2:.*]] = arith.constant 2 : index
// CHECK-DAG:     %[[TMP_c6_i32:.*]] = arith.constant 6 : i32
// CHECK-DAG:     %[[TMP_c1_i32:.*]] = arith.constant 1 : i32
// CHECK-DAG:     %[[TMP_c0_i32:.*]] = arith.constant 0 : i32
// CHECK-DAG:     %[[TMP_c8_i8:.*]] = arith.constant 8 : i8
// CHECK-DAG:     %[[TMP_c3:.*]] = arith.constant 3 : index
// CHECK-DAG:     %[[TMP_c1:.*]] = arith.constant 1 : index
// CHECK-DAG:     %[[TMP_cst:.*]] = arith.constant 0.000000e+00 : f64
// CHECK-DAG:     %[[TMP_c0:.*]] = arith.constant 0 : index
// CHECK-DAG:     %[[TMP_c4:.*]] = arith.constant 4 : index
// CHECK:         %[[TMP_0:.*]] = memref.alloc() : memref<5x4xf64>
// CHECK:         linalg.fill ins(%[[TMP_cst]] : f64) outs(%[[TMP_0]] : memref<5x4xf64>)
// CHECK:         scf.for %[[TMP_arg2:.*]] = %[[TMP_c0]] to %[[TMP_c2]] step %[[TMP_c1]] {
// CHECK:           scf.for %[[TMP_arg3:.*]] = %[[TMP_c0]] to %[[TMP_c4]] step %[[TMP_c1]] {
// CHECK:             %[[TMP_12:.*]] = tensor.extract %[[TMP_arg0]][%[[TMP_arg2]], %[[TMP_arg3]]] : tensor<2x4xf64>
// CHECK:             %[[TMP_13:.*]] = arith.cmpf une, %[[TMP_12]], %[[TMP_cst]] : f64
// CHECK:             scf.if %[[TMP_13]] {
// CHECK:               memref.store %[[TMP_12]], %[[TMP_0]][%[[TMP_arg2]], %[[TMP_arg3]]] : memref<5x4xf64>
// CHECK:             }
// CHECK:           }
// CHECK:         }
// CHECK-DAG:     %[[LvlTypes:.*]] = memref.alloca() : memref<2xi8>
// CHECK-DAG:     %[[LvlTypesP:.*]] = memref.cast %[[LvlTypes]] : memref<2xi8> to memref<?xi8>
// CHECK-DAG:     memref.store %[[TMP_c8_i8]], %[[LvlTypes]][%[[TMP_c0]]] : memref<2xi8>
// CHECK-DAG:     memref.store %[[TMP_c8_i8]], %[[LvlTypes]][%[[TMP_c1]]] : memref<2xi8>
// CHECK-DAG:     %[[DimSizes:.*]] = memref.alloca() : memref<2xindex>
// CHECK-DAG:     %[[DimSizesP:.*]] = memref.cast %[[DimSizes]] : memref<2xindex> to memref<?xindex>
// CHECK-DAG:     memref.store %[[TMP_c3]], %[[DimSizes]][%[[TMP_c0]]] : memref<2xindex>
// CHECK-DAG:     memref.store %[[TMP_c4]], %[[DimSizes]][%[[TMP_c1]]] : memref<2xindex>
// CHECK-DAG:     %[[LvlSizes:.*]] = memref.alloca() : memref<2xindex>
// CHECK-DAG:     %[[LvlSizesP:.*]] = memref.cast %[[LvlSizes]] : memref<2xindex> to memref<?xindex>
// CHECK-DAG:     %[[Iota:.*]] = memref.alloca() : memref<2xindex>
// CHECK-DAG:     %[[IotaP:.*]] = memref.cast %[[Iota]] : memref<2xindex> to memref<?xindex>
// CHECK-DAG:     memref.store %[[TMP_c0]], %[[Iota]][%[[TMP_c0]]] : memref<2xindex>
// CHECK-DAG:     memref.store %[[TMP_c1]], %[[Iota]][%[[TMP_c1]]] : memref<2xindex>
// CHECK:         %[[TMP_7:.*]] = call @newSparseTensor(%[[DimSizesP]], %[[LvlSizesP]], %[[LvlTypesP]], %[[IotaP]], %[[IotaP]], %[[TMP_c0_i32]], %[[TMP_c0_i32]], %[[TMP_c1_i32]], %[[TMP_c6_i32]], %[[TMP_arg1]])
// CHECK:         %[[TMP_8:.*]] = memref.alloca() : memref<2xindex>
// CHECK:         %[[TMP_9:.*]] = memref.cast %[[TMP_8]] : memref<2xindex> to memref<?xindex>
// CHECK:         %[[TMP_10:.*]] = memref.alloca() : memref<f64>
// CHECK:         scf.while : () -> () {
// CHECK:           %[[TMP_12:.*]] = func.call @getNextF64(%[[TMP_7]], %[[TMP_9]], %[[TMP_10]]) : (!llvm.ptr<i8>, memref<?xindex>, memref<f64>) -> i1
// CHECK:           scf.condition(%[[TMP_12]])
// CHECK:         } do {
// CHECK:           %[[TMP_12:.*]] = memref.load %[[TMP_8]][%[[TMP_c0]]] : memref<2xindex>
// CHECK:           %[[TMP_13:.*]] = arith.addi %[[TMP_12]], %[[TMP_c2]] : index
// CHECK:           %[[TMP_14:.*]] = memref.load %[[TMP_8]][%[[TMP_c1]]] : memref<2xindex>
// CHECK:           %[[TMP_15:.*]] = memref.load %[[TMP_10]][] : memref<f64>
// CHECK:           memref.store %[[TMP_15]], %[[TMP_0]][%[[TMP_13]], %[[TMP_14]]] : memref<5x4xf64>
// CHECK:           scf.yield
// CHECK:         }
// CHECK:         call @delSparseTensorIteratorF64(%[[TMP_7]]) : (!llvm.ptr<i8>) -> ()
// CHECK:         %[[TMP_11:.*]] = bufferization.to_tensor %[[TMP_0]] : memref<5x4xf64>
// CHECK:         return %[[TMP_11]] : tensor<5x4xf64>
// CHECK:       }
func.func @concat_mix_dense(%arg0: tensor<2x4xf64>, %arg1: tensor<3x4xf64, #SparseMatrix>) -> tensor<5x4xf64> {
  %0 = sparse_tensor.concatenate %arg0, %arg1 {dimension = 0 : index}
       : tensor<2x4xf64>, tensor<3x4xf64, #SparseMatrix> to tensor<5x4xf64>
  return %0 : tensor<5x4xf64>
}

// CHECK-LABEL: func.func @concat_mix_sparse(
// CHECK-SAME:    %[[TMP_arg0:.*]]: tensor<2x4xf64>,
// CHECK-SAME:    %[[TMP_arg1:.*]]: !llvm.ptr<i8>)
// CHECK-DAG:     %[[TMP_c2:.*]] = arith.constant 2 : index
// CHECK-DAG:     %[[TMP_c2_i32:.*]] = arith.constant 2 : i32
// CHECK-DAG:     %[[TMP_c6_i32:.*]] = arith.constant 6 : i32
// CHECK-DAG:     %[[TMP_c3:.*]] = arith.constant 3 : index
// CHECK-DAG:     %[[TMP_cst:.*]] = arith.constant 0.000000e+00 : f64
// CHECK-DAG:     %[[TMP_c4_i32:.*]] = arith.constant 4 : i32
// CHECK-DAG:     %[[TMP_c1_i32:.*]] = arith.constant 1 : i32
// CHECK-DAG:     %[[TMP_c0_i32:.*]] = arith.constant 0 : i32
// CHECK-DAG:     %[[TMP_c1:.*]] = arith.constant 1 : index
// CHECK-DAG:     %[[TMP_c0:.*]] = arith.constant 0 : index
// CHECK-DAG:     %[[TMP_c5:.*]] = arith.constant 5 : index
// CHECK-DAG:     %[[TMP_c4:.*]] = arith.constant 4 : index
// CHECK-DAG:     %[[TMP_c8_i8:.*]] = arith.constant 8 : i8
// CHECK-DAG:     %[[LvlTypes_0:.*]] = memref.alloca() : memref<2xi8>
// CHECK-DAG:     %[[LvlTypesP_0:.*]] = memref.cast %[[LvlTypes_0]] : memref<2xi8> to memref<?xi8>
// CHECK-DAG:     memref.store %[[TMP_c8_i8]], %[[LvlTypes_0]][%[[TMP_c0]]] : memref<2xi8>
// CHECK-DAG:     memref.store %[[TMP_c8_i8]], %[[LvlTypes_0]][%[[TMP_c1]]] : memref<2xi8>
// CHECK-DAG:     %[[DimSizes_0:.*]] = memref.alloca() : memref<2xindex>
// CHECK-DAG:     %[[DimSizesP_0:.*]] = memref.cast %[[DimSizes_0]] : memref<2xindex> to memref<?xindex>
// CHECK-DAG:     memref.store %[[TMP_c5]], %[[DimSizes_0]][%[[TMP_c0]]] : memref<2xindex>
// CHECK-DAG:     memref.store %[[TMP_c4]], %[[DimSizes_0]][%[[TMP_c1]]] : memref<2xindex>
// CHECK-DAG:     %[[LvlSizes_0:.*]] = memref.alloca() : memref<2xindex>
// CHECK-DAG:     %[[LvlSizesP_0:.*]] = memref.cast %[[LvlSizes_0]] : memref<2xindex> to memref<?xindex>
// CHECK-DAG:     %[[Iota_0:.*]] = memref.alloca() : memref<2xindex>
// CHECK-DAG:     %[[IotaP_0:.*]] = memref.cast %[[Iota_0]] : memref<2xindex> to memref<?xindex>
// CHECK-DAG:     memref.store %[[TMP_c0]], %[[Iota_0]][%[[TMP_c0]]] : memref<2xindex>
// CHECK-DAG:     memref.store %[[TMP_c1]], %[[Iota_0]][%[[TMP_c1]]] : memref<2xindex>
// CHECK-DAG:     %[[NullPtr:.*]] = llvm.mlir.null : !llvm.ptr<i8>
// CHECK:         %[[TMP_7:.*]] = call @newSparseTensor(%[[DimSizesP_0]], %[[LvlSizesP_0]], %[[LvlTypesP_0]], %[[IotaP_0]], %[[IotaP_0]], %[[TMP_c0_i32]], %[[TMP_c0_i32]], %[[TMP_c1_i32]], %[[TMP_c4_i32]], %[[NullPtr]])
// CHECK:         %[[TMP_9:.*]] = memref.alloca() : memref<2xindex>
// CHECK:         %[[TMP_10:.*]] = memref.cast %[[TMP_9]] : memref<2xindex> to memref<?xindex>
// CHECK:         %[[TMP_8:.*]] = memref.alloca() : memref<f64>
// CHECK:         scf.for %[[TMP_arg2:.*]] = %[[TMP_c0]] to %[[TMP_c2]] step %[[TMP_c1]] {
// CHECK:           scf.for %[[TMP_arg3:.*]] = %[[TMP_c0]] to %[[TMP_c4]] step %[[TMP_c1]] {
// CHECK:             memref.store %[[TMP_arg2]], %[[TMP_9]][%[[TMP_c0]]] : memref<2xindex>
// CHECK:             memref.store %[[TMP_arg3]], %[[TMP_9]][%[[TMP_c1]]] : memref<2xindex>
// CHECK:             %[[TMP_22:.*]] = tensor.extract %[[TMP_arg0]][%[[TMP_arg2]], %[[TMP_arg3]]] : tensor<2x4xf64>
// CHECK:             %[[TMP_23:.*]] = arith.cmpf une, %[[TMP_22]], %[[TMP_cst]] : f64
// CHECK:             scf.if %[[TMP_23]] {
// CHECK:               memref.store %[[TMP_22]], %[[TMP_8]][] : memref<f64>
// CHECK:               %[[TMP_24:.*]] = func.call @addEltF64(%[[TMP_7]], %[[TMP_8]], %[[TMP_10]], %[[IotaP_0]]) : (!llvm.ptr<i8>, memref<f64>, memref<?xindex>, memref<?xindex>) -> !llvm.ptr<i8>
// CHECK:             }
// CHECK:           }
// CHECK:         }
// CHECK-DAG:     %[[LvlTypes_1:.*]] = memref.alloca() : memref<2xi8>
// CHECK-DAG:     %[[LvlTypesP_1:.*]] = memref.cast %[[LvlTypes_1]] : memref<2xi8> to memref<?xi8>
// CHECK-DAG:     memref.store %[[TMP_c8_i8]], %[[LvlTypes_1]][%[[TMP_c0]]] : memref<2xi8>
// CHECK-DAG:     memref.store %[[TMP_c8_i8]], %[[LvlTypes_1]][%[[TMP_c1]]] : memref<2xi8>
// CHECK-DAG:     %[[DimSizes_1:.*]] = memref.alloca() : memref<2xindex>
// CHECK-DAG:     %[[DimSizesP_1:.*]] = memref.cast %[[DimSizes_1]] : memref<2xindex> to memref<?xindex>
// CHECK-DAG:     memref.store %[[TMP_c3]], %[[DimSizes_1]][%[[TMP_c0]]] : memref<2xindex>
// CHECK-DAG:     memref.store %[[TMP_c4]], %[[DimSizes_1]][%[[TMP_c1]]] : memref<2xindex>
// CHECK-DAG:     %[[LvlSizes_1:.*]] = memref.alloca() : memref<2xindex>
// CHECK-DAG:     %[[LvlSizesP_1:.*]] = memref.cast %[[LvlSizes_1]] : memref<2xindex> to memref<?xindex>
// CHECK-DAG:     %[[Iota_1:.*]] = memref.alloca() : memref<2xindex>
// CHECK-DAG:     %[[IotaP_1:.*]] = memref.cast %[[Iota_1]] : memref<2xindex> to memref<?xindex>
// CHECK-DAG:     memref.store %[[TMP_c0]], %[[Iota_1]][%[[TMP_c0]]] : memref<2xindex>
// CHECK-DAG:     memref.store %[[TMP_c1]], %[[Iota_1]][%[[TMP_c1]]] : memref<2xindex>
// CHECK:         %[[TMP_17:.*]] = call @newSparseTensor(%[[DimSizesP_1]], %[[LvlSizesP_1]], %[[LvlTypesP_1]], %[[IotaP_1]], %[[IotaP_1]], %[[TMP_c0_i32]], %[[TMP_c0_i32]], %[[TMP_c1_i32]], %[[TMP_c6_i32]], %[[TMP_arg1]])
// CHECK:         %[[TMP_18:.*]] = memref.alloca() : memref<2xindex>
// CHECK:         %[[TMP_19:.*]] = memref.cast %[[TMP_18]] : memref<2xindex> to memref<?xindex>
// CHECK:         %[[TMP_20:.*]] = memref.alloca() : memref<f64>
// CHECK:         scf.while : () -> () {
// CHECK:           %[[TMP_22:.*]] = func.call @getNextF64(%[[TMP_17]], %[[TMP_19]], %[[TMP_20]]) : (!llvm.ptr<i8>, memref<?xindex>, memref<f64>) -> i1
// CHECK:           scf.condition(%[[TMP_22]])
// CHECK:         } do {
// CHECK:           %[[TMP_22:.*]] = memref.load %[[TMP_18]][%[[TMP_c0]]] : memref<2xindex>
// CHECK:           %[[TMP_23:.*]] = arith.addi %[[TMP_22]], %[[TMP_c2]] : index
// CHECK:           %[[TMP_24:.*]] = memref.load %[[TMP_18]][%[[TMP_c1]]] : memref<2xindex>
// CHECK:           memref.store %[[TMP_23]], %[[TMP_9]][%[[TMP_c0]]] : memref<2xindex>
// CHECK:           memref.store %[[TMP_24]], %[[TMP_9]][%[[TMP_c1]]] : memref<2xindex>
// CHECK:           %[[TMP_25:.*]] = func.call @addEltF64(%[[TMP_7]], %[[TMP_20]], %[[TMP_10]], %[[IotaP_0]]) : (!llvm.ptr<i8>, memref<f64>, memref<?xindex>, memref<?xindex>) -> !llvm.ptr<i8>
// CHECK:           scf.yield
// CHECK:         }
// CHECK:         call @delSparseTensorIteratorF64(%[[TMP_17]]) : (!llvm.ptr<i8>) -> ()
// CHECK:         %[[TMP_21:.*]] = call @newSparseTensor(%[[DimSizesP_0]], %[[LvlSizesP_0]], %[[LvlTypesP_0]], %[[IotaP_0]], %[[IotaP_0]], %[[TMP_c0_i32]], %[[TMP_c0_i32]], %[[TMP_c1_i32]], %[[TMP_c2_i32]], %[[TMP_7]])
// CHECK:         call @delSparseTensorCOOF64(%[[TMP_7]]) : (!llvm.ptr<i8>) -> ()
// CHECK:         return %[[TMP_21]] : !llvm.ptr<i8>
// CHECK:       }
func.func @concat_mix_sparse(%arg0: tensor<2x4xf64>, %arg1: tensor<3x4xf64, #SparseMatrix>) -> tensor<5x4xf64, #SparseMatrix> {
  %0 = sparse_tensor.concatenate %arg0, %arg1 {dimension = 0 : index}
       : tensor<2x4xf64>, tensor<3x4xf64, #SparseMatrix> to tensor<5x4xf64, #SparseMatrix>
  return %0 : tensor<5x4xf64, #SparseMatrix>
}

// CHECK-LABEL: func.func @concat_mix_sparse_perm_dim1(
// CHECK-SAME:    %[[TMP_arg0:.*]]: tensor<4x2xf64>,
// CHECK-SAME:    %[[TMP_arg1:.*]]: !llvm.ptr<i8>)
// CHECK-DAG:     %[[TMP_c2:.*]] = arith.constant 2 : index
// CHECK-DAG:     %[[TMP_c2_i32:.*]] = arith.constant 2 : i32
// CHECK-DAG:     %[[TMP_c6_i32:.*]] = arith.constant 6 : i32
// CHECK-DAG:     %[[TMP_c3:.*]] = arith.constant 3 : index
// CHECK-DAG:     %[[TMP_cst:.*]] = arith.constant 0.000000e+00 : f64
// CHECK-DAG:     %[[TMP_c4_i32:.*]] = arith.constant 4 : i32
// CHECK-DAG:     %[[TMP_c1_i32:.*]] = arith.constant 1 : i32
// CHECK-DAG:     %[[TMP_c0_i32:.*]] = arith.constant 0 : i32
// CHECK-DAG:     %[[TMP_c1:.*]] = arith.constant 1 : index
// CHECK-DAG:     %[[TMP_c0:.*]] = arith.constant 0 : index
// CHECK-DAG:     %[[TMP_c4:.*]] = arith.constant 4 : index
// CHECK-DAG:     %[[TMP_c5:.*]] = arith.constant 5 : index
// CHECK-DAG:     %[[TMP_c8_i8:.*]] = arith.constant 8 : i8
// CHECK-DAG:     %[[LvlTypes_0:.*]] = memref.alloca() : memref<2xi8>
// CHECK-DAG:     %[[LvlTypesP_0:.*]] = memref.cast %[[LvlTypes_0]] : memref<2xi8> to memref<?xi8>
// CHECK-DAG:     memref.store %[[TMP_c8_i8]], %[[LvlTypes_0]][%[[TMP_c0]]] : memref<2xi8>
// CHECK-DAG:     memref.store %[[TMP_c8_i8]], %[[LvlTypes_0]][%[[TMP_c1]]] : memref<2xi8>
// CHECK-DAG:     %[[DimSizes_0:.*]] = memref.alloca() : memref<2xindex>
// CHECK-DAG:     %[[DimSizesP_0:.*]] = memref.cast %[[DimSizes_0]] : memref<2xindex> to memref<?xindex>
// CHECK-DAG:     memref.store %[[TMP_c4]], %[[DimSizes_0]][%[[TMP_c0]]] : memref<2xindex>
// CHECK-DAG:     memref.store %[[TMP_c5]], %[[DimSizes_0]][%[[TMP_c1]]] : memref<2xindex>
// CHECK-DAG:     %[[LvlSizes_0:.*]] = memref.alloca() : memref<2xindex>
// CHECK-DAG:     %[[LvlSizesP_0:.*]] = memref.cast %[[LvlSizes_0]] : memref<2xindex> to memref<?xindex>
// CHECK-DAG:     %[[Lvl2Dim_0:.*]] = memref.alloca() : memref<2xindex>
// CHECK-DAG:     %[[Lvl2DimP_0:.*]] = memref.cast %[[Lvl2Dim_0]] : memref<2xindex> to memref<?xindex>
// CHECK-DAG:     %[[Dim2Lvl_0:.*]] = memref.alloca() : memref<2xindex>
// CHECK-DAG:     %[[Dim2LvlP_0:.*]] = memref.cast %[[Dim2Lvl_0]] : memref<2xindex> to memref<?xindex>
// CHECK-DAG:     memref.store %[[TMP_c1]], %[[Dim2Lvl_0]][%[[TMP_c0]]] : memref<2xindex>
// CHECK-DAG:     memref.store %[[TMP_c0]], %[[Dim2Lvl_0]][%[[TMP_c1]]] : memref<2xindex>
// CHECK-DAG:     %[[NullPtr:.*]] = llvm.mlir.null : !llvm.ptr<i8>
// CHECK:         %[[TMP_7:.*]] = call @newSparseTensor(%[[DimSizesP_0]], %[[LvlSizesP_0]], %[[LvlTypesP_0]], %[[Lvl2DimP_0]], %[[Dim2LvlP_0]], %[[TMP_c0_i32]], %[[TMP_c0_i32]], %[[TMP_c1_i32]], %[[TMP_c4_i32]], %[[NullPtr]])
// CHECK:         %[[TMP_9:.*]] = memref.alloca() : memref<2xindex>
// CHECK:         %[[TMP_10:.*]] = memref.cast %[[TMP_9]] : memref<2xindex> to memref<?xindex>
// CHECK:         %[[TMP_8:.*]] = memref.alloca() : memref<f64>
// CHECK:         scf.for %[[TMP_arg2:.*]] = %[[TMP_c0]] to %[[TMP_c4]] step %[[TMP_c1]] {
// CHECK:           scf.for %[[TMP_arg3:.*]] = %[[TMP_c0]] to %[[TMP_c2]] step %[[TMP_c1]] {
// CHECK:             memref.store %[[TMP_arg2]], %[[TMP_9]][%[[TMP_c0]]] : memref<2xindex>
// CHECK:             memref.store %[[TMP_arg3]], %[[TMP_9]][%[[TMP_c1]]] : memref<2xindex>
// CHECK:             %[[TMP_22:.*]] = tensor.extract %[[TMP_arg0]][%[[TMP_arg2]], %[[TMP_arg3]]] : tensor<4x2xf64>
// CHECK:             %[[TMP_23:.*]] = arith.cmpf une, %[[TMP_22]], %[[TMP_cst]] : f64
// CHECK:             scf.if %[[TMP_23]] {
// CHECK:               memref.store %[[TMP_22]], %[[TMP_8]][] : memref<f64>
// CHECK:               %[[TMP_24:.*]] = func.call @addEltF64(%[[TMP_7]], %[[TMP_8]], %[[TMP_10]], %[[Dim2LvlP_0]]) : (!llvm.ptr<i8>, memref<f64>, memref<?xindex>, memref<?xindex>) -> !llvm.ptr<i8>
// CHECK:             }
// CHECK:           }
// CHECK:         }
// CHECK-DAG:     %[[LvlTypes_1:.*]] = memref.alloca() : memref<2xi8>
// CHECK-DAG:     %[[LvlTypesP_1:.*]] = memref.cast %[[LvlTypes_1]] : memref<2xi8> to memref<?xi8>
// CHECK-DAG:     memref.store %[[TMP_c8_i8]], %[[LvlTypes_1]][%[[TMP_c0]]] : memref<2xi8>
// CHECK-DAG:     memref.store %[[TMP_c8_i8]], %[[LvlTypes_1]][%[[TMP_c1]]] : memref<2xi8>
// CHECK-DAG:     %[[DimSizes_1:.*]] = memref.alloca() : memref<2xindex>
// CHECK-DAG:     %[[DimSizesP_1:.*]] = memref.cast %[[DimSizes_1]] : memref<2xindex> to memref<?xindex>
// CHECK-DAG:     memref.store %[[TMP_c4]], %[[DimSizes_1]][%[[TMP_c0]]] : memref<2xindex>
// CHECK-DAG:     memref.store %[[TMP_c3]], %[[DimSizes_1]][%[[TMP_c1]]] : memref<2xindex>
// CHECK-DAG:     %[[LvlSizes_1:.*]] = memref.alloca() : memref<2xindex>
// CHECK-DAG:     %[[LvlSizesP_1:.*]] = memref.cast %[[LvlSizes_1]] : memref<2xindex> to memref<?xindex>
// CHECK-DAG:     %[[Iota_1:.*]] = memref.alloca() : memref<2xindex>
// CHECK-DAG:     %[[IotaP_1:.*]] = memref.cast %[[Iota_1]] : memref<2xindex> to memref<?xindex>
// CHECK-DAG:     memref.store %[[TMP_c0]], %[[Iota_1]][%[[TMP_c0]]] : memref<2xindex>
// CHECK-DAG:     memref.store %[[TMP_c1]], %[[Iota_1]][%[[TMP_c1]]] : memref<2xindex>
// CHECK:         %[[TMP_17:.*]] = call @newSparseTensor(%[[DimSizesP_1]], %[[LvlSizesP_1]], %[[LvlTypesP_1]], %[[IotaP_1]], %[[IotaP_1]], %[[TMP_c0_i32]], %[[TMP_c0_i32]], %[[TMP_c1_i32]], %[[TMP_c6_i32]], %[[TMP_arg1]])
// CHECK:         %[[TMP_18:.*]] = memref.alloca() : memref<2xindex>
// CHECK:         %[[TMP_19:.*]] = memref.cast %[[TMP_18]] : memref<2xindex> to memref<?xindex>
// CHECK:         %[[TMP_20:.*]] = memref.alloca() : memref<f64>
// CHECK:         scf.while : () -> () {
// CHECK:           %[[TMP_22:.*]] = func.call @getNextF64(%[[TMP_17]], %[[TMP_19]], %[[TMP_20]]) : (!llvm.ptr<i8>, memref<?xindex>, memref<f64>) -> i1
// CHECK:           scf.condition(%[[TMP_22]])
// CHECK:         } do {
// CHECK:           %[[TMP_22:.*]] = memref.load %[[TMP_18]][%[[TMP_c0]]] : memref<2xindex>
// CHECK:           %[[TMP_23:.*]] = memref.load %[[TMP_18]][%[[TMP_c1]]] : memref<2xindex>
// CHECK:           %[[TMP_24:.*]] = arith.addi %[[TMP_23]], %[[TMP_c2]] : index
// CHECK:           memref.store %[[TMP_22]], %[[TMP_9]][%[[TMP_c0]]] : memref<2xindex>
// CHECK:           memref.store %[[TMP_24]], %[[TMP_9]][%[[TMP_c1]]] : memref<2xindex>
// CHECK:           %[[TMP_25:.*]] = func.call @addEltF64(%[[TMP_7]], %[[TMP_20]], %[[TMP_10]], %[[Dim2LvlP_0]]) : (!llvm.ptr<i8>, memref<f64>, memref<?xindex>, memref<?xindex>) -> !llvm.ptr<i8>
// CHECK:           scf.yield
// CHECK:         }
// CHECK:         call @delSparseTensorIteratorF64(%[[TMP_17]]) : (!llvm.ptr<i8>) -> ()
// CHECK:         %[[TMP_21:.*]] = call @newSparseTensor(%[[DimSizesP_0]], %[[LvlSizesP_0]], %[[LvlTypesP_0]], %[[Lvl2DimP_0]], %[[Dim2LvlP_0]], %[[TMP_c0_i32]], %[[TMP_c0_i32]], %[[TMP_c1_i32]], %[[TMP_c2_i32]], %[[TMP_7]])
// CHECK:         call @delSparseTensorCOOF64(%[[TMP_7]]) : (!llvm.ptr<i8>) -> ()
// CHECK:         return %[[TMP_21]] : !llvm.ptr<i8>
// CHECK:       }
func.func @concat_mix_sparse_perm_dim1(%arg0: tensor<4x2xf64>, %arg1: tensor<4x3xf64, #SparseMatrix_P>) -> tensor<4x5xf64, #SparseMatrix_P> {
  %0 = sparse_tensor.concatenate %arg0, %arg1 {dimension = 1 : index}
       : tensor<4x2xf64>, tensor<4x3xf64, #SparseMatrix_P> to tensor<4x5xf64, #SparseMatrix_P>
  return %0 : tensor<4x5xf64, #SparseMatrix_P>
}

// CHECK-LABEL: func.func @concat_mix_dense_perm_dim1(
// CHECK-SAME:     %[[TMP_arg0:.*]]: tensor<4x2xf64>,
// CHECK-SAME:     %[[TMP_arg1:.*]]: !llvm.ptr<i8>)
// CHECK-DAG:         %[[TMP_c2:.*]] = arith.constant 2 : index
// CHECK-DAG:         %[[TMP_c6_i32:.*]] = arith.constant 6 : i32
// CHECK-DAG:         %[[TMP_c1_i32:.*]] = arith.constant 1 : i32
// CHECK-DAG:         %[[TMP_c0_i32:.*]] = arith.constant 0 : i32
// CHECK-DAG:         %[[TMP_c8_i8:.*]] = arith.constant 8 : i8
// CHECK-DAG:         %[[TMP_c3:.*]] = arith.constant 3 : index
// CHECK-DAG:         %[[TMP_c1:.*]] = arith.constant 1 : index
// CHECK-DAG:         %[[TMP_cst:.*]] = arith.constant 0.000000e+00 : f64
// CHECK-DAG:         %[[TMP_c0:.*]] = arith.constant 0 : index
// CHECK-DAG:         %[[TMP_c4:.*]] = arith.constant 4 : index
// CHECK:         %[[TMP_0:.*]] = memref.alloc() : memref<4x5xf64>
// CHECK:         linalg.fill ins(%[[TMP_cst]] : f64) outs(%[[TMP_0]] : memref<4x5xf64>)
// CHECK:         scf.for %[[TMP_arg2:.*]] = %[[TMP_c0]] to %[[TMP_c4]] step %[[TMP_c1]] {
// CHECK:           scf.for %[[TMP_arg3:.*]] = %[[TMP_c0]] to %[[TMP_c2]] step %[[TMP_c1]] {
// CHECK:             %[[TMP_12:.*]] = tensor.extract %[[TMP_arg0]][%[[TMP_arg2]], %[[TMP_arg3]]] : tensor<4x2xf64>
// CHECK:             %[[TMP_13:.*]] = arith.cmpf une, %[[TMP_12]], %[[TMP_cst]] : f64
// CHECK:             scf.if %[[TMP_13]] {
// CHECK:               memref.store %[[TMP_12]], %[[TMP_0]][%[[TMP_arg2]], %[[TMP_arg3]]] : memref<4x5xf64>
// CHECK:             }
// CHECK:           }
// CHECK:         }
// CHECK-DAG:     %[[LvlTypes:.*]] = memref.alloca() : memref<2xi8>
// CHECK-DAG:     %[[LvlTypesP:.*]] = memref.cast %[[LvlTypes]] : memref<2xi8> to memref<?xi8>
// CHECK-DAG:     memref.store %[[TMP_c8_i8]], %[[LvlTypes]][%[[TMP_c0]]] : memref<2xi8>
// CHECK-DAG:     memref.store %[[TMP_c8_i8]], %[[LvlTypes]][%[[TMP_c1]]] : memref<2xi8>
// CHECK-DAG:     %[[DimSizes:.*]] = memref.alloca() : memref<2xindex>
// CHECK-DAG:     %[[DimSizesP:.*]] = memref.cast %[[DimSizes]] : memref<2xindex> to memref<?xindex>
// CHECK-DAG:     memref.store %[[TMP_c4]], %[[DimSizes]][%[[TMP_c0]]] : memref<2xindex>
// CHECK-DAG:     memref.store %[[TMP_c3]], %[[DimSizes]][%[[TMP_c1]]] : memref<2xindex>
// CHECK-DAG:     %[[LvlSizes:.*]] = memref.alloca() : memref<2xindex>
// CHECK-DAG:     %[[LvlSizesP:.*]] = memref.cast %[[LvlSizes]] : memref<2xindex> to memref<?xindex>
// CHECK-DAG:     %[[Iota:.*]] = memref.alloca() : memref<2xindex>
// CHECK-DAG:     %[[IotaP:.*]] = memref.cast %[[Iota]] : memref<2xindex> to memref<?xindex>
// CHECK-DAG:     memref.store %[[TMP_c0]], %[[Iota]][%[[TMP_c0]]] : memref<2xindex>
// CHECK-DAG:     memref.store %[[TMP_c1]], %[[Iota]][%[[TMP_c1]]] : memref<2xindex>
// CHECK:         %[[TMP_7:.*]] = call @newSparseTensor(%[[DimSizesP]], %[[LvlSizesP]], %[[LvlTypesP]], %[[IotaP]], %[[IotaP]], %[[TMP_c0_i32]], %[[TMP_c0_i32]], %[[TMP_c1_i32]], %[[TMP_c6_i32]], %[[TMP_arg1]])
// CHECK:         %[[TMP_8:.*]] = memref.alloca() : memref<2xindex>
// CHECK:         %[[TMP_9:.*]] = memref.cast %[[TMP_8]] : memref<2xindex> to memref<?xindex>
// CHECK:         %[[TMP_10:.*]] = memref.alloca() : memref<f64>
// CHECK:         scf.while : () -> () {
// CHECK:           %[[TMP_12:.*]] = func.call @getNextF64(%[[TMP_7]], %[[TMP_9]], %[[TMP_10]]) : (!llvm.ptr<i8>, memref<?xindex>, memref<f64>) -> i1
// CHECK:           scf.condition(%[[TMP_12]])
// CHECK:         } do {
// CHECK:           %[[TMP_12:.*]] = memref.load %[[TMP_8]][%[[TMP_c0]]] : memref<2xindex>
// CHECK:           %[[TMP_13:.*]] = memref.load %[[TMP_8]][%[[TMP_c1]]] : memref<2xindex>
// CHECK:           %[[TMP_14:.*]] = arith.addi %[[TMP_13]], %[[TMP_c2]] : index
// CHECK:           %[[TMP_15:.*]] = memref.load %[[TMP_10]][] : memref<f64>
// CHECK:           memref.store %[[TMP_15]], %[[TMP_0]][%[[TMP_12]], %[[TMP_14]]] : memref<4x5xf64>
// CHECK:           scf.yield
// CHECK:         }
// CHECK:         call @delSparseTensorIteratorF64(%[[TMP_7]]) : (!llvm.ptr<i8>) -> ()
// CHECK:         %[[TMP_11:.*]] = bufferization.to_tensor %[[TMP_0]] : memref<4x5xf64>
// CHECK:         return %[[TMP_11]] : tensor<4x5xf64>
// CHECK:       }
func.func @concat_mix_dense_perm_dim1(%arg0: tensor<4x2xf64>, %arg1: tensor<4x3xf64, #SparseMatrix_P>) -> tensor<4x5xf64> {
  %0 = sparse_tensor.concatenate %arg0, %arg1 {dimension = 1 : index}
       : tensor<4x2xf64>, tensor<4x3xf64, #SparseMatrix_P> to tensor<4x5xf64>
  return %0 : tensor<4x5xf64>
}

// CHECK-LABEL: func.func @concat_mix_dense_perm_dim1_dyn(
// CHECK-SAME:      %[[TMP_arg0:.*]]: tensor<3x2xf64>,
// CHECK-SAME:      %[[TMP_arg1:.*]]: !llvm.ptr<i8>)
// CHECK-DAG:       %[[TMP_c2:.*]] = arith.constant 2 : index
// CHECK-DAG:       %[[TMP_c6_i32:.*]] = arith.constant 6 : i32
// CHECK-DAG:       %[[TMP_c1_i32:.*]] = arith.constant 1 : i32
// CHECK-DAG:       %[[TMP_c0_i32:.*]] = arith.constant 0 : i32
// CHECK-DAG:       %[[TMP_c8_i8:.*]] = arith.constant 8 : i8
// CHECK-DAG:       %[[TMP_cst:.*]] = arith.constant 0.000000e+00 : f64
// CHECK-DAG:       %[[TMP_c0:.*]] = arith.constant 0 : index
// CHECK-DAG:       %[[TMP_c3:.*]] = arith.constant 3 : index
// CHECK-DAG:       %[[TMP_c1:.*]] = arith.constant 1 : index
// CHECK:           %[[TMP_0:.*]] = memref.alloc() : memref<3x5xf64>
// CHECK:           %[[TMP_1:.*]] = memref.cast %[[TMP_0]] : memref<3x5xf64> to memref<?x?xf64>
// CHECK:           linalg.fill ins(%[[TMP_cst]] : f64) outs(%[[TMP_0]] : memref<3x5xf64>)
// CHECK:           scf.for %[[TMP_arg2:.*]] = %[[TMP_c0]] to %[[TMP_c3]] step %[[TMP_c1]] {
// CHECK:             scf.for %[[TMP_arg3:.*]] = %[[TMP_c0]] to %[[TMP_c2]] step %[[TMP_c1]] {
// CHECK:               %[[TMP_13:.*]] = tensor.extract %[[TMP_arg0]][%[[TMP_arg2]], %[[TMP_arg3]]] : tensor<3x2xf64>
// CHECK:               %[[TMP_14:.*]] = arith.cmpf une, %[[TMP_13]], %[[TMP_cst]] : f64
// CHECK:               scf.if %[[TMP_14]] {
// CHECK:                 memref.store %[[TMP_13]], %[[TMP_0]][%[[TMP_arg2]], %[[TMP_arg3]]] : memref<3x5xf64>
// CHECK:               }
// CHECK:             }
// CHECK:           }
// CHECK-DAG:       %[[LvlTypes:.*]] = memref.alloca() : memref<2xi8>
// CHECK-DAG:       %[[LvlTypesP:.*]] = memref.cast %[[LvlTypes]] : memref<2xi8> to memref<?xi8>
// CHECK-DAG:       memref.store %[[TMP_c8_i8]], %[[LvlTypes]][%[[TMP_c0]]] : memref<2xi8>
// CHECK-DAG:       memref.store %[[TMP_c8_i8]], %[[LvlTypes]][%[[TMP_c1]]] : memref<2xi8>
// CHECK-DAG:       %[[DimSizes:.*]] = memref.alloca() : memref<2xindex>
// CHECK-DAG:       %[[DimSizesP:.*]] = memref.cast %[[DimSizes]] : memref<2xindex> to memref<?xindex>
// CHECK-DAG:       memref.store %[[TMP_c3]], %[[DimSizes]][%[[TMP_c0]]] : memref<2xindex>
// CHECK-DAG:       memref.store %[[TMP_c3]], %[[DimSizes]][%[[TMP_c1]]] : memref<2xindex>
// CHECK-DAG:       %[[LvlSizes:.*]] = memref.alloca() : memref<2xindex>
// CHECK-DAG:       %[[LvlSizesP:.*]] = memref.cast %[[LvlSizes]] : memref<2xindex> to memref<?xindex>
// CHECK-DAG:       %[[Iota:.*]] = memref.alloca() : memref<2xindex>
// CHECK-DAG:       %[[IotaP:.*]] = memref.cast %[[Iota]] : memref<2xindex> to memref<?xindex>
// CHECK-DAG:       memref.store %[[TMP_c0]], %[[Iota]][%[[TMP_c0]]] : memref<2xindex>
// CHECK-DAG:       memref.store %[[TMP_c1]], %[[Iota]][%[[TMP_c1]]] : memref<2xindex>
// CHECK:           %[[TMP_8:.*]] = call @newSparseTensor(%[[DimSizesP]], %[[LvlSizesP]], %[[LvlTypesP]], %[[IotaP]], %[[IotaP]], %[[TMP_c0_i32]], %[[TMP_c0_i32]], %[[TMP_c1_i32]], %[[TMP_c6_i32]], %[[TMP_arg1]])
// CHECK:           %[[TMP_9:.*]] = memref.alloca() : memref<2xindex>
// CHECK:           %[[TMP_10:.*]] = memref.cast %[[TMP_9]] : memref<2xindex> to memref<?xindex>
// CHECK:           %[[TMP_11:.*]] = memref.alloca() : memref<f64>
// CHECK:           scf.while : () -> () {
// CHECK:             %[[TMP_13:.*]] = func.call @getNextF64(%[[TMP_8]], %[[TMP_10]], %[[TMP_11]]) : (!llvm.ptr<i8>, memref<?xindex>, memref<f64>) -> i1
// CHECK:             scf.condition(%[[TMP_13]])
// CHECK:           } do {
// CHECK:             %[[TMP_13:.*]] = memref.load %[[TMP_9]][%[[TMP_c0]]] : memref<2xindex>
// CHECK:             %[[TMP_14:.*]] = memref.load %[[TMP_9]][%[[TMP_c1]]] : memref<2xindex>
// CHECK:             %[[TMP_15:.*]] = arith.addi %[[TMP_14]], %[[TMP_c2]] : index
// CHECK:             %[[TMP_16:.*]] = memref.load %[[TMP_11]][] : memref<f64>
// CHECK:             memref.store %[[TMP_16]], %[[TMP_0]][%[[TMP_13]], %[[TMP_15]]] : memref<3x5xf64>
// CHECK:             scf.yield
// CHECK:           }
// CHECK:           call @delSparseTensorIteratorF64(%[[TMP_8]]) : (!llvm.ptr<i8>) -> ()
// CHECK:           %[[TMP_12:.*]] = bufferization.to_tensor %[[TMP_1]] : memref<?x?xf64>
// CHECK:           return %[[TMP_12]] : tensor<?x?xf64>
// CHECK:       }
func.func @concat_mix_dense_perm_dim1_dyn(%arg0: tensor<3x2xf64>, %arg1: tensor<3x3xf64, #SparseMatrix>) -> tensor<?x?xf64> {
  %0 = sparse_tensor.concatenate %arg0, %arg1 {dimension = 1 : index}
       : tensor<3x2xf64>, tensor<3x3xf64, #SparseMatrix> to tensor<?x?xf64>
  return %0 : tensor<?x?xf64>
}

// CHECK-LABEL: func.func @concat_annotated_dense(
// CHECK-SAME:    %[[TMP_arg0:.*]]: tensor<4x2xf64>,
// CHECK-SAME:    %[[TMP_arg1:.*]]: !llvm.ptr<i8>)
// CHECK-DAG:     %[[TMP_c2:.*]] = arith.constant 2 : index
// CHECK-DAG:     %[[TMP_c6_i32:.*]] = arith.constant 6 : i32
// CHECK-DAG:     %[[TMP_c4_i8:.*]] = arith.constant 4 : i8
// CHECK-DAG:     %[[TMP_c8_i8:.*]] = arith.constant 8 : i8
// CHECK-DAG:     %[[TMP_c3:.*]] = arith.constant 3 : index
// CHECK-DAG:     %[[TMP_cst:.*]] = arith.constant 0.000000e+00 : f64
// CHECK-DAG:     %[[TMP_c1_i32:.*]] = arith.constant 1 : i32
// CHECK-DAG:     %[[TMP_c0_i32:.*]] = arith.constant 0 : i32
// CHECK-DAG:     %[[TMP_c1:.*]] = arith.constant 1 : index
// CHECK-DAG:     %[[TMP_c0:.*]] = arith.constant 0 : index
// CHECK-DAG:     %[[TMP_c4:.*]] = arith.constant 4 : index
// CHECK-DAG:     %[[TMP_c5:.*]] = arith.constant 5 : index
// CHECK-DAG:     %[[LvlTypes_0:.*]] = memref.alloca() : memref<2xi8>
// CHECK-DAG:     %[[LvlTypesP_0:.*]] = memref.cast %[[LvlTypes_0]] : memref<2xi8> to memref<?xi8>
// CHECK-DAG:     memref.store %[[TMP_c4_i8]], %[[LvlTypes_0]][%[[TMP_c0]]] : memref<2xi8>
// CHECK-DAG:     memref.store %[[TMP_c4_i8]], %[[LvlTypes_0]][%[[TMP_c1]]] : memref<2xi8>
// CHECK-DAG:     %[[DimSizes_0:.*]] = memref.alloca() : memref<2xindex>
// CHECK-DAG:     %[[DimSizesP_0:.*]] = memref.cast %[[DimSizes_0]] : memref<2xindex> to memref<?xindex>
// CHECK-DAG:     memref.store %[[TMP_c4]], %[[DimSizes_0]][%[[TMP_c0]]] : memref<2xindex>
// CHECK-DAG:     memref.store %[[TMP_c5]], %[[DimSizes_0]][%[[TMP_c1]]] : memref<2xindex>
// CHECK-DAG:     %[[LvlSizes_0:.*]] = memref.alloca() : memref<2xindex>
// CHECK-DAG:     %[[LvlSizesP_0:.*]] = memref.cast %[[LvlSizes_0]] : memref<2xindex> to memref<?xindex>
// CHECK-DAG:     %[[Lvl2Dim_0:.*]] = memref.alloca() : memref<2xindex>
// CHECK-DAG:     %[[Lvl2DimP_0:.*]] = memref.cast %[[Lvl2Dim_0]] : memref<2xindex> to memref<?xindex>
// CHECK-DAG:     %[[Dim2Lvl_0:.*]] = memref.alloca() : memref<2xindex>
// CHECK-DAG:     %[[Dim2LvlP_0:.*]] = memref.cast %[[Dim2Lvl_0]] : memref<2xindex> to memref<?xindex>
// CHECK-DAG:     memref.store %[[TMP_c1]], %[[Dim2Lvl_0]][%[[TMP_c0]]] : memref<2xindex>
// CHECK-DAG:     memref.store %[[TMP_c0]], %[[Dim2Lvl_0]][%[[TMP_c1]]] : memref<2xindex>
// CHECK-DAG:     %[[NullPtr:.*]] = llvm.mlir.null : !llvm.ptr<i8>
// CHECK:         %[[TMP_7:.*]] = call @newSparseTensor(%[[DimSizesP_0]], %[[LvlSizesP_0]], %[[LvlTypesP_0]], %[[Lvl2DimP_0]], %[[Dim2LvlP_0]], %[[TMP_c0_i32]], %[[TMP_c0_i32]], %[[TMP_c1_i32]], %[[TMP_c0_i32]], %[[NullPtr]])
// CHECK:         %[[Values_r:.*]] = call @sparseValuesF64(%[[TMP_7]]) : (!llvm.ptr<i8>) -> memref<?xf64>
// CHECK:         %[[Values:.*]] = memref.reshape %[[Values_r]]
// CHECK:         scf.for %[[TMP_arg2:.*]] = %[[TMP_c0]] to %[[TMP_c4]] step %[[TMP_c1]] {
// CHECK:           scf.for %[[TMP_arg3:.*]] = %[[TMP_c0]] to %[[TMP_c2]] step %[[TMP_c1]] {
// CHECK:             %[[TMP_22:.*]] = tensor.extract %[[TMP_arg0]][%[[TMP_arg2]], %[[TMP_arg3]]] : tensor<4x2xf64>
// CHECK:             %[[TMP_23:.*]] = arith.cmpf une, %[[TMP_22]], %[[TMP_cst]] : f64
// CHECK:             scf.if %[[TMP_23]] {
// CHECK:               memref.store %[[TMP_22]], %[[Values]][%[[TMP_arg3]], %[[TMP_arg2]]] : memref<?x?xf64>
// CHECK:             }
// CHECK:           }
// CHECK:         }
// CHECK-DAG:     %[[LvlTypes_1:.*]] = memref.alloca() : memref<2xi8>
// CHECK-DAG:     %[[LvlTypesP_1:.*]] = memref.cast %[[LvlTypes_1]] : memref<2xi8> to memref<?xi8>
// CHECK-DAG:     memref.store %[[TMP_c8_i8]], %[[LvlTypes_1]][%[[TMP_c0]]] : memref<2xi8>
// CHECK-DAG:     memref.store %[[TMP_c8_i8]], %[[LvlTypes_1]][%[[TMP_c1]]] : memref<2xi8>
// CHECK-DAG:     %[[DimSizes_1:.*]] = memref.alloca() : memref<2xindex>
// CHECK-DAG:     %[[DimSizesP_1:.*]] = memref.cast %[[DimSizes_1]] : memref<2xindex> to memref<?xindex>
// CHECK-DAG:     memref.store %[[TMP_c4]], %[[DimSizes_1]][%[[TMP_c0]]] : memref<2xindex>
// CHECK-DAG:     memref.store %[[TMP_c3]], %[[DimSizes_1]][%[[TMP_c1]]] : memref<2xindex>
// CHECK-DAG:     %[[LvlSizes_1:.*]] = memref.alloca() : memref<2xindex>
// CHECK-DAG:     %[[LvlSizesP_1:.*]] = memref.cast %[[LvlSizes_1]] : memref<2xindex> to memref<?xindex>
// CHECK-DAG:     %[[Iota_1:.*]] = memref.alloca() : memref<2xindex>
// CHECK-DAG:     %[[IotaP_1:.*]] = memref.cast %[[Iota_1]] : memref<2xindex> to memref<?xindex>
// CHECK-DAG:     memref.store %[[TMP_c0]], %[[Iota_1]][%[[TMP_c0]]] : memref<2xindex>
// CHECK-DAG:     memref.store %[[TMP_c1]], %[[Iota_1]][%[[TMP_c1]]] : memref<2xindex>
// CHECK:         %[[TMP_17:.*]] = call @newSparseTensor(%[[DimSizesP_1]], %[[LvlSizesP_1]], %[[LvlTypesP_1]], %[[IotaP_1]], %[[IotaP_1]], %[[TMP_c0_i32]], %[[TMP_c0_i32]], %[[TMP_c1_i32]], %[[TMP_c6_i32]], %[[TMP_arg1]])
// CHECK:         %[[TMP_18:.*]] = memref.alloca() : memref<2xindex>
// CHECK:         %[[TMP_19:.*]] = memref.cast %[[TMP_18]] : memref<2xindex> to memref<?xindex>
// CHECK:         %[[TMP_20:.*]] = memref.alloca() : memref<f64>
// CHECK:         scf.while : () -> () {
// CHECK:           %[[TMP_22:.*]] = func.call @getNextF64(%[[TMP_17]], %[[TMP_19]], %[[TMP_20]]) : (!llvm.ptr<i8>, memref<?xindex>, memref<f64>) -> i1
// CHECK:           scf.condition(%[[TMP_22]])
// CHECK:         } do {
// CHECK:           %[[TMP_22:.*]] = memref.load %[[TMP_18]][%[[TMP_c0]]] : memref<2xindex>
// CHECK:           %[[TMP_23:.*]] = memref.load %[[TMP_18]][%[[TMP_c1]]] : memref<2xindex>
// CHECK:           %[[TMP_24:.*]] = arith.addi %[[TMP_23]], %[[TMP_c2]] : index
// CHECK:           %[[TMP_25:.*]] = memref.load %[[TMP_20]][] : memref<f64>
// CHECK:           memref.store %[[TMP_25]], %[[Values]][%[[TMP_24]], %[[TMP_22]]] : memref<?x?xf64>
// CHECK:           scf.yield
// CHECK:         }
// CHECK:         call @delSparseTensorIteratorF64(%[[TMP_17]]) : (!llvm.ptr<i8>) -> ()
// CHECK:         return %[[TMP_7]] : !llvm.ptr<i8>
// CHECK:       }
func.func @concat_annotated_dense(%arg0: tensor<4x2xf64>, %arg1: tensor<4x3xf64, #SparseMatrix_P>) -> tensor<4x5xf64, #SparseMatrix_D_P> {
  %0 = sparse_tensor.concatenate %arg0, %arg1 {dimension = 1 : index}
       : tensor<4x2xf64>, tensor<4x3xf64, #SparseMatrix_P> to tensor<4x5xf64, #SparseMatrix_D_P>
  return %0 : tensor<4x5xf64, #SparseMatrix_D_P>
}