1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
|
// RUN: mlir-opt %s --linalg-generalize-named-ops \
// RUN: --linalg-fuse-elementwise-ops \
// RUN: --sparsification | \
// RUN: FileCheck %s --check-prefix=CHECK-SPARSE
// RUN: mlir-opt %s --linalg-generalize-named-ops \
// RUN: --linalg-fuse-elementwise-ops \
// RUN: --sparsification --sparse-tensor-conversion --cse | \
// RUN: FileCheck %s --check-prefix=CHECK-CONVERT
#CSR = #sparse_tensor.encoding<{
lvlTypes = [ "dense", "compressed" ]
}>
#CSC = #sparse_tensor.encoding<{
lvlTypes = [ "dense", "compressed" ],
dimToLvl = affine_map<(i,j) -> (j,i)>
}>
#DCSC = #sparse_tensor.encoding<{
lvlTypes = [ "compressed", "compressed" ],
dimToLvl = affine_map<(i,j) -> (j,i)>
}>
#SV = #sparse_tensor.encoding<{
lvlTypes = [ "compressed" ]
}>
#rowsum = {
indexing_maps = [
affine_map<(i,j) -> (i,j)>, // A
affine_map<(i,j) -> (i)> // x (out)
],
iterator_types = ["parallel", "reduction"],
doc = "X(i) = SUM A(i,j)"
}
//
// CHECK-SPARSE-LABEL: func @kernel(
// CHECK-SPARSE: %[[A:.*]], %[[B:.*]], %[[C:.*]], %{{.*}} = sparse_tensor.expand
// CHECK-SPARSE: %[[COUNT:.*]] = scf.for {{.*}} {
// CHECK-SPARSE: scf.for {{.*}} {
// CHECK-SPARSE: }
// CHECK-SPARSE: }
// CHECK-SPARSE: sparse_tensor.compress %[[A]], %[[B]], %[[C]], %[[COUNT]] into
// CHECK-SPARSE: %[[RET:.*]] = sparse_tensor.load %{{.*}} hasInserts
// CHECK-SPARSE: return %[[RET]]
//
// CHECK-CONVERT-LABEL: func @kernel(
// CHECK-CONVERT-SAME: %[[A:.*]]: !llvm.ptr<i8>) -> !llvm.ptr<i8>
// CHECK-CONVERT: %[[C0:.*]] = arith.constant 0 : index
// CHECK-CONVERT: %[[N:.*]] = call @sparseDimSize(%[[A]], %[[C0]])
// CHECK-CONVERT: %[[V:.*]] = call @newSparseTensor
// CHECK-CONVERT: %[[S:.*]] = call @sparseLvlSize(%[[V]], %[[C0]])
// CHECK-CONVERT: %[[A:.*]] = memref.alloc(%[[S]]) : memref<?xf64>
// CHECK-CONVERT: %[[B:.*]] = memref.alloc(%[[S]]) : memref<?xi1>
// CHECK-CONVERT: %[[C:.*]] = memref.alloc(%[[S]]) : memref<?xindex>
// CHECK-CONVERT: linalg.fill ins(%{{.*}} : f64) outs(%[[A]] : memref<?xf64>)
// CHECK-CONVERT: linalg.fill ins(%{{.*}} : i1) outs(%[[B]] : memref<?xi1>)
// CHECK-CONVERT: scf.for {{.*}} {
// CHECK-CONVERT: scf.for {{.*}} {
// CHECK-CONVERT: }
// CHECK-CONVERT: }
// CHECK-CONVERT: call @expInsertF64
// CHECK-CONVERT: memref.dealloc %[[A]] : memref<?xf64>
// CHECK-CONVERT: memref.dealloc %[[B]] : memref<?xi1>
// CHECK-CONVERT: memref.dealloc %[[C]] : memref<?xindex>
// CHECK-CONVERT: call @endInsert
//
func.func @kernel(%arga: tensor<?x?xf64, #DCSC>) -> tensor<?xf64, #SV> {
%c0 = arith.constant 0 : index
%n = tensor.dim %arga, %c0 : tensor<?x?xf64, #DCSC>
%v = bufferization.alloc_tensor(%n) : tensor<?xf64, #SV>
%0 = linalg.generic #rowsum
ins(%arga: tensor<?x?xf64, #DCSC>)
outs(%v: tensor<?xf64, #SV>) {
^bb(%a: f64, %x: f64):
%1 = arith.addf %x, %a : f64
linalg.yield %1 : f64
} -> tensor<?xf64, #SV>
return %0 : tensor<?xf64, #SV>
}
//
// CHECK-SPARSE-LABEL: func @matmul1(
// CHECK-SPARSE-DAG: %[[C0:.*]] = arith.constant 0 : index
// CHECK-SPARSE-DAG: %[[C1:.*]] = arith.constant 1 : index
// CHECK-SPARSE-DAG: %[[C8:.*]] = arith.constant 8 : index
// CHECK-SPARSE: %[[T:.*]] = scf.for %{{.*}} = %[[C0]] to %[[C8]] step %[[C1]] {{.*}} {
// CHECK-SPARSE: %[[A:.*]], %[[B:.*]], %[[C:.*]], %{{.*}} = sparse_tensor.expand
// CHECK-SPARSE: %[[COUNT:.*]] = scf.for {{.*}} {
// CHECK-SPARSE: scf.for {{.*}} {
// CHECK-SPARSE: }
// CHECK-SPARSE: }
// CHECK-SPARSE: sparse_tensor.compress %[[A]], %[[B]], %[[C]], %[[COUNT]] into
// CHECK-SPARSE: }
// CHECK-SPARSE: %[[RET:.*]] = sparse_tensor.load %[[T]] hasInserts
// CHECK-SPARSE: return %[[RET]]
//
// CHECK-CONVERT-LABEL: func @matmul1(
// CHECK-CONVERT-DAG: %[[C0:.*]] = arith.constant 0 : index
// CHECK-CONVERT-DAG: %[[C1:.*]] = arith.constant 1 : index
// CHECK-CONVERT-DAG: %[[C4:.*]] = arith.constant 4 : index
// CHECK-CONVERT-DAG: %[[C8:.*]] = arith.constant 8 : index
// CHECK-CONVERT: %[[N:.*]] = call @newSparseTensor
// CHECK-CONVERT: %[[A:.*]] = memref.alloc(%[[C4]]) : memref<?xf64>
// CHECK-CONVERT: %[[B:.*]] = memref.alloc(%[[C4]]) : memref<?xi1>
// CHECK-CONVERT: %[[C:.*]] = memref.alloc(%[[C4]]) : memref<?xindex>
// CHECK-CONVERT: linalg.fill ins(%{{.*}} : f64) outs(%[[A]] : memref<?xf64>)
// CHECK-CONVERT: linalg.fill ins(%{{.*}} : i1) outs(%[[B]] : memref<?xi1>)
// CHECK-CONVERT: scf.for %{{.*}} = %[[C0]] to %[[C8]] step %[[C1]] {{.*}} {
// CHECK-CONVERT: scf.for {{.*}} {
// CHECK-CONVERT: scf.for {{.*}} {
// CHECK-CONVERT: }
// CHECK-CONVERT: }
// CHECK-CONVERT: call @expInsertF64
// CHECK-CONVERT: }
// CHECK-CONVERT: memref.dealloc %[[A]] : memref<?xf64>
// CHECK-CONVERT: memref.dealloc %[[B]] : memref<?xi1>
// CHECK-CONVERT: memref.dealloc %[[C]] : memref<?xindex>
// CHECK-CONVERT: call @endInsert
//
func.func @matmul1(%A: tensor<8x2xf64, #CSR>,
%B: tensor<2x4xf64, #CSR>) -> tensor<8x4xf64, #CSR> {
%C = bufferization.alloc_tensor() : tensor<8x4xf64, #CSR>
%D = linalg.matmul
ins(%A, %B: tensor<8x2xf64, #CSR>, tensor<2x4xf64, #CSR>)
outs(%C: tensor<8x4xf64, #CSR>) -> tensor<8x4xf64, #CSR>
return %D: tensor<8x4xf64, #CSR>
}
//
// CHECK-SPARSE-LABEL: func @matmul2(
// CHECK-SPARSE-DAG: %[[C0:.*]] = arith.constant 0 : index
// CHECK-SPARSE-DAG: %[[C1:.*]] = arith.constant 1 : index
// CHECK-SPARSE-DAG: %[[C4:.*]] = arith.constant 4 : index
// CHECK-SPARSE: %[[T:.*]] = scf.for %{{.*}} = %[[C0]] to %[[C4]] step %[[C1]] {{.*}} {
// CHECK-SPARSE: %[[A:.*]], %[[B:.*]], %[[C:.*]], %{{.*}} = sparse_tensor.expand
// CHECK-SPARSE: %[[COUNT:.*]] = scf.for {{.*}} {
// CHECK-SPARSE: scf.for {{.*}} {
// CHECK-SPARSE: }
// CHECK-SPARSE: }
// CHECK-SPARSE: sparse_tensor.compress %[[A]], %[[B]], %[[C]], %[[COUNT]]
// CHECK-SPARSE: }
// CHECK-SPARSE: %[[RET:.*]] = sparse_tensor.load %[[T]] hasInserts
// CHECK-SPARSE: return %[[RET]]
//
// CHECK-CONVERT-LABEL: func @matmul2(
// CHECK-CONVERT-DAG: %[[C0:.*]] = arith.constant 0 : index
// CHECK-CONVERT-DAG: %[[C1:.*]] = arith.constant 1 : index
// CHECK-CONVERT-DAG: %[[C4:.*]] = arith.constant 4 : index
// CHECK-CONVERT-DAG: %[[C8:.*]] = arith.constant 8 : index
// CHECK-CONVERT: %[[N:.*]] = call @newSparseTensor
// CHECK-CONVERT: %[[A:.*]] = memref.alloc(%[[C8]]) : memref<?xf64>
// CHECK-CONVERT: %[[B:.*]] = memref.alloc(%[[C8]]) : memref<?xi1>
// CHECK-CONVERT: %[[C:.*]] = memref.alloc(%[[C8]]) : memref<?xindex>
// CHECK-CONVERT: linalg.fill ins(%{{.*}} : f64) outs(%[[A]] : memref<?xf64>)
// CHECK-CONVERT: linalg.fill ins(%{{.*}} : i1) outs(%[[B]] : memref<?xi1>)
// CHECK-CONVERT: scf.for %{{.*}} = %[[C0]] to %[[C4]] step %[[C1]] {{.*}} {
// CHECK-CONVERT: scf.for {{.*}} {
// CHECK-CONVERT: scf.for {{.*}} {
// CHECK-CONVERT: }
// CHECK-CONVERT: }
// CHECK-CONVERT: call @expInsertF64
// CHECK-CONVERT: }
// CHECK-CONVERT: memref.dealloc %[[A]] : memref<?xf64>
// CHECK-CONVERT: memref.dealloc %[[B]] : memref<?xi1>
// CHECK-CONVERT: memref.dealloc %[[C]] : memref<?xindex>
// CHECK-CONVERT: call @endInsert
//
func.func @matmul2(%A: tensor<8x2xf64, #CSC>,
%B: tensor<2x4xf64, #CSC>) -> tensor<8x4xf64, #CSC> {
%C = bufferization.alloc_tensor() : tensor<8x4xf64, #CSC>
%D = linalg.matmul
ins(%A, %B: tensor<8x2xf64, #CSC>, tensor<2x4xf64, #CSC>)
outs(%C: tensor<8x4xf64, #CSC>) -> tensor<8x4xf64, #CSC>
return %D: tensor<8x4xf64, #CSC>
}
|