1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
|
// RUN: mlir-opt %s -sparsification | FileCheck %s
#SV = #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>
#trait1 = {
indexing_maps = [
affine_map<(i) -> (i)>, // a
affine_map<(i) -> (i)> // x (out)
],
iterator_types = ["parallel"],
doc = "x(i) = OP a(i)"
}
#trait2 = {
indexing_maps = [
affine_map<(i) -> (i)>, // a
affine_map<(i) -> (i)>, // b
affine_map<(i) -> (i)> // x (out)
],
iterator_types = ["parallel"],
doc = "x(i) = a(i) OP b(i)"
}
#traitc = {
indexing_maps = [
affine_map<(i) -> (i)>, // a
affine_map<(i) -> (i)> // x (out)
],
iterator_types = ["parallel"],
doc = "x(i) = a(i) OP c"
}
// CHECK-LABEL: func @abs(
// CHECK-SAME: %[[VAL_0:.*]]: tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>>,
// CHECK-SAME: %[[VAL_1:.*]]: tensor<32xf64>) -> tensor<32xf64> {
// CHECK-DAG: %[[VAL_2:.*]] = arith.constant 0 : index
// CHECK-DAG: %[[VAL_3:.*]] = arith.constant 1 : index
// CHECK: %[[VAL_4:.*]] = sparse_tensor.positions %[[VAL_0]] {level = 0 : index} : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref<?xindex>
// CHECK: %[[VAL_5:.*]] = sparse_tensor.coordinates %[[VAL_0]] {level = 0 : index} : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref<?xindex>
// CHECK: %[[VAL_6:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref<?xf64>
// CHECK: %[[VAL_7:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32xf64>
// CHECK: %[[VAL_8:.*]] = memref.load %[[VAL_4]]{{\[}}%[[VAL_2]]] : memref<?xindex>
// CHECK: %[[VAL_9:.*]] = memref.load %[[VAL_4]]{{\[}}%[[VAL_3]]] : memref<?xindex>
// CHECK: scf.for %[[VAL_10:.*]] = %[[VAL_8]] to %[[VAL_9]] step %[[VAL_3]] {
// CHECK: %[[VAL_11:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_10]]] : memref<?xindex>
// CHECK: %[[VAL_12:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_10]]] : memref<?xf64>
// CHECK: %[[VAL_13:.*]] = math.absf %[[VAL_12]] : f64
// CHECK: memref.store %[[VAL_13]], %[[VAL_7]]{{\[}}%[[VAL_11]]] : memref<32xf64>
// CHECK: }
// CHECK: %[[VAL_14:.*]] = bufferization.to_tensor %[[VAL_7]] : memref<32xf64>
// CHECK: return %[[VAL_14]] : tensor<32xf64>
// CHECK: }
func.func @abs(%arga: tensor<32xf64, #SV>,
%argx: tensor<32xf64>) -> tensor<32xf64> {
%0 = linalg.generic #trait1
ins(%arga: tensor<32xf64, #SV>)
outs(%argx: tensor<32xf64>) {
^bb(%a: f64, %x: f64):
%0 = math.absf %a : f64
linalg.yield %0 : f64
} -> tensor<32xf64>
return %0 : tensor<32xf64>
}
// CHECK-LABEL: func @ceil(
// CHECK-SAME: %[[VAL_0:.*]]: tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>>,
// CHECK-SAME: %[[VAL_1:.*]]: tensor<32xf64>) -> tensor<32xf64> {
// CHECK-DAG: %[[VAL_2:.*]] = arith.constant 0 : index
// CHECK-DAG: %[[VAL_3:.*]] = arith.constant 1 : index
// CHECK: %[[VAL_4:.*]] = sparse_tensor.positions %[[VAL_0]] {level = 0 : index} : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref<?xindex>
// CHECK: %[[VAL_5:.*]] = sparse_tensor.coordinates %[[VAL_0]] {level = 0 : index} : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref<?xindex>
// CHECK: %[[VAL_6:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref<?xf64>
// CHECK: %[[VAL_7:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32xf64>
// CHECK: %[[VAL_8:.*]] = memref.load %[[VAL_4]]{{\[}}%[[VAL_2]]] : memref<?xindex>
// CHECK: %[[VAL_9:.*]] = memref.load %[[VAL_4]]{{\[}}%[[VAL_3]]] : memref<?xindex>
// CHECK: scf.for %[[VAL_10:.*]] = %[[VAL_8]] to %[[VAL_9]] step %[[VAL_3]] {
// CHECK: %[[VAL_11:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_10]]] : memref<?xindex>
// CHECK: %[[VAL_12:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_10]]] : memref<?xf64>
// CHECK: %[[VAL_13:.*]] = math.ceil %[[VAL_12]] : f64
// CHECK: memref.store %[[VAL_13]], %[[VAL_7]]{{\[}}%[[VAL_11]]] : memref<32xf64>
// CHECK: }
// CHECK: %[[VAL_14:.*]] = bufferization.to_tensor %[[VAL_7]] : memref<32xf64>
// CHECK: return %[[VAL_14]] : tensor<32xf64>
// CHECK: }
func.func @ceil(%arga: tensor<32xf64, #SV>,
%argx: tensor<32xf64>) -> tensor<32xf64> {
%0 = linalg.generic #trait1
ins(%arga: tensor<32xf64, #SV>)
outs(%argx: tensor<32xf64>) {
^bb(%a: f64, %x: f64):
%0 = math.ceil %a : f64
linalg.yield %0 : f64
} -> tensor<32xf64>
return %0 : tensor<32xf64>
}
// CHECK-LABEL: func @floor(
// CHECK-SAME: %[[VAL_0:.*]]: tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>>,
// CHECK-SAME: %[[VAL_1:.*]]: tensor<32xf64>) -> tensor<32xf64> {
// CHECK-DAG: %[[VAL_2:.*]] = arith.constant 0 : index
// CHECK-DAG: %[[VAL_3:.*]] = arith.constant 1 : index
// CHECK: %[[VAL_4:.*]] = sparse_tensor.positions %[[VAL_0]] {level = 0 : index} : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref<?xindex>
// CHECK: %[[VAL_5:.*]] = sparse_tensor.coordinates %[[VAL_0]] {level = 0 : index} : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref<?xindex>
// CHECK: %[[VAL_6:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref<?xf64>
// CHECK: %[[VAL_7:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32xf64>
// CHECK: %[[VAL_8:.*]] = memref.load %[[VAL_4]]{{\[}}%[[VAL_2]]] : memref<?xindex>
// CHECK: %[[VAL_9:.*]] = memref.load %[[VAL_4]]{{\[}}%[[VAL_3]]] : memref<?xindex>
// CHECK: scf.for %[[VAL_10:.*]] = %[[VAL_8]] to %[[VAL_9]] step %[[VAL_3]] {
// CHECK: %[[VAL_11:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_10]]] : memref<?xindex>
// CHECK: %[[VAL_12:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_10]]] : memref<?xf64>
// CHECK: %[[VAL_13:.*]] = math.floor %[[VAL_12]] : f64
// CHECK: memref.store %[[VAL_13]], %[[VAL_7]]{{\[}}%[[VAL_11]]] : memref<32xf64>
// CHECK: }
// CHECK: %[[VAL_14:.*]] = bufferization.to_tensor %[[VAL_7]] : memref<32xf64>
// CHECK: return %[[VAL_14]] : tensor<32xf64>
// CHECK: }
func.func @floor(%arga: tensor<32xf64, #SV>,
%argx: tensor<32xf64>) -> tensor<32xf64> {
%0 = linalg.generic #trait1
ins(%arga: tensor<32xf64, #SV>)
outs(%argx: tensor<32xf64>) {
^bb(%a: f64, %x: f64):
%0 = math.floor %a : f64
linalg.yield %0 : f64
} -> tensor<32xf64>
return %0 : tensor<32xf64>
}
// CHECK-LABEL: func @neg(
// CHECK-SAME: %[[VAL_0:.*]]: tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>>,
// CHECK-SAME: %[[VAL_1:.*]]: tensor<32xf64>) -> tensor<32xf64> {
// CHECK-DAG: %[[VAL_2:.*]] = arith.constant 0 : index
// CHECK-DAG: %[[VAL_3:.*]] = arith.constant 1 : index
// CHECK: %[[VAL_4:.*]] = sparse_tensor.positions %[[VAL_0]] {level = 0 : index} : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref<?xindex>
// CHECK: %[[VAL_5:.*]] = sparse_tensor.coordinates %[[VAL_0]] {level = 0 : index} : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref<?xindex>
// CHECK: %[[VAL_6:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref<?xf64>
// CHECK: %[[VAL_7:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32xf64>
// CHECK: %[[VAL_8:.*]] = memref.load %[[VAL_4]]{{\[}}%[[VAL_2]]] : memref<?xindex>
// CHECK: %[[VAL_9:.*]] = memref.load %[[VAL_4]]{{\[}}%[[VAL_3]]] : memref<?xindex>
// CHECK: scf.for %[[VAL_10:.*]] = %[[VAL_8]] to %[[VAL_9]] step %[[VAL_3]] {
// CHECK: %[[VAL_11:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_10]]] : memref<?xindex>
// CHECK: %[[VAL_12:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_10]]] : memref<?xf64>
// CHECK: %[[VAL_13:.*]] = arith.negf %[[VAL_12]] : f64
// CHECK: memref.store %[[VAL_13]], %[[VAL_7]]{{\[}}%[[VAL_11]]] : memref<32xf64>
// CHECK: }
// CHECK: %[[VAL_14:.*]] = bufferization.to_tensor %[[VAL_7]] : memref<32xf64>
// CHECK: return %[[VAL_14]] : tensor<32xf64>
// CHECK: }
func.func @neg(%arga: tensor<32xf64, #SV>,
%argx: tensor<32xf64>) -> tensor<32xf64> {
%0 = linalg.generic #trait1
ins(%arga: tensor<32xf64, #SV>)
outs(%argx: tensor<32xf64>) {
^bb(%a: f64, %x: f64):
%0 = arith.negf %a : f64
linalg.yield %0 : f64
} -> tensor<32xf64>
return %0 : tensor<32xf64>
}
// CHECK-LABEL: func @add(
// CHECK-SAME: %[[VAL_0:.*]]: tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>>,
// CHECK-SAME: %[[VAL_1:.*]]: tensor<32xf64>,
// CHECK-SAME: %[[VAL_2:.*]]: tensor<32xf64>) -> tensor<32xf64> {
// CHECK-DAG: %[[VAL_3:.*]] = arith.constant 32 : index
// CHECK-DAG: %[[VAL_4:.*]] = arith.constant 0 : index
// CHECK-DAG: %[[VAL_5:.*]] = arith.constant true
// CHECK-DAG: %[[VAL_6:.*]] = arith.constant 1 : index
// CHECK: %[[VAL_7:.*]] = sparse_tensor.positions %[[VAL_0]] {level = 0 : index} : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>>
// CHECK: %[[VAL_8:.*]] = sparse_tensor.coordinates %[[VAL_0]] {level = 0 : index} : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>>
// CHECK: %[[VAL_9:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>>
// CHECK: %[[VAL_10:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32xf64>
// CHECK: %[[VAL_11:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32xf64>
// CHECK: %[[VAL_12:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_4]]] : memref<?xindex>
// CHECK: %[[VAL_13:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_6]]] : memref<?xindex>
// CHECK: %[[VAL_14:.*]]:2 = scf.while (%[[VAL_15:.*]] = %[[VAL_12]], %[[VAL_16:.*]] = %[[VAL_4]]) : (index, index) -> (index, index) {
// CHECK: %[[VAL_17:.*]] = arith.cmpi ult, %[[VAL_15]], %[[VAL_13]] : index
// CHECK: scf.condition(%[[VAL_17]]) %[[VAL_15]], %[[VAL_16]] : index, index
// CHECK: } do {
// CHECK: ^bb0(%[[VAL_18:.*]]: index, %[[VAL_19:.*]]: index):
// CHECK: %[[VAL_20:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_18]]] : memref<?xindex>
// CHECK: %[[VAL_21:.*]] = arith.cmpi eq, %[[VAL_20]], %[[VAL_19]] : index
// CHECK: scf.if %[[VAL_21]] {
// CHECK: %[[VAL_22:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_18]]] : memref<?xf64>
// CHECK: %[[VAL_23:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_19]]] : memref<32xf64>
// CHECK: %[[VAL_24:.*]] = arith.addf %[[VAL_22]], %[[VAL_23]] : f64
// CHECK: memref.store %[[VAL_24]], %[[VAL_11]]{{\[}}%[[VAL_19]]] : memref<32xf64>
// CHECK: } else {
// CHECK: scf.if %[[VAL_5]] {
// CHECK: %[[VAL_25:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_19]]] : memref<32xf64>
// CHECK: memref.store %[[VAL_25]], %[[VAL_11]]{{\[}}%[[VAL_19]]] : memref<32xf64>
// CHECK: } else {
// CHECK: }
// CHECK: }
// CHECK: %[[VAL_26:.*]] = arith.cmpi eq, %[[VAL_20]], %[[VAL_19]] : index
// CHECK: %[[VAL_27:.*]] = arith.addi %[[VAL_18]], %[[VAL_6]] : index
// CHECK: %[[VAL_28:.*]] = arith.select %[[VAL_26]], %[[VAL_27]], %[[VAL_18]] : index
// CHECK: %[[VAL_29:.*]] = arith.addi %[[VAL_19]], %[[VAL_6]] : index
// CHECK: scf.yield %[[VAL_28]], %[[VAL_29]] : index, index
// CHECK: }
// CHECK: scf.for %[[VAL_30:.*]] = %[[VAL_31:.*]]#1 to %[[VAL_3]] step %[[VAL_6]] {
// CHECK: %[[VAL_32:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_30]]] : memref<32xf64>
// CHECK: memref.store %[[VAL_32]], %[[VAL_11]]{{\[}}%[[VAL_30]]] : memref<32xf64>
// CHECK: }
// CHECK: %[[VAL_33:.*]] = bufferization.to_tensor %[[VAL_11]] : memref<32xf64>
// CHECK: return %[[VAL_33]] : tensor<32xf64>
// CHECK: }
func.func @add(%arga: tensor<32xf64, #SV>,
%argb: tensor<32xf64>,
%argx: tensor<32xf64>) -> tensor<32xf64> {
%0 = linalg.generic #trait2
ins(%arga, %argb: tensor<32xf64, #SV>, tensor<32xf64>)
outs(%argx: tensor<32xf64>) {
^bb(%a: f64, %b: f64, %x: f64):
%0 = arith.addf %a, %b : f64
linalg.yield %0 : f64
} -> tensor<32xf64>
return %0 : tensor<32xf64>
}
// CHECK-LABEL: func @sub(
// CHECK-SAME: %[[VAL_0:.*]]: tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>>,
// CHECK-SAME: %[[VAL_1:.*]]: tensor<32xf64>,
// CHECK-SAME: %[[VAL_2:.*]]: tensor<32xf64>) -> tensor<32xf64> {
// CHECK-DAG: %[[VAL_3:.*]] = arith.constant 32 : index
// CHECK-DAG: %[[VAL_4:.*]] = arith.constant 0 : index
// CHECK-DAG: %[[VAL_5:.*]] = arith.constant true
// CHECK-DAG: %[[VAL_6:.*]] = arith.constant 1 : index
// CHECK: %[[VAL_7:.*]] = sparse_tensor.positions %[[VAL_0]] {level = 0 : index} : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref<?xindex>
// CHECK: %[[VAL_8:.*]] = sparse_tensor.coordinates %[[VAL_0]] {level = 0 : index} : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref<?xindex>
// CHECK: %[[VAL_9:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref<?xf64>
// CHECK: %[[VAL_10:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32xf64>
// CHECK: %[[VAL_11:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32xf64>
// CHECK: %[[VAL_12:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_4]]] : memref<?xindex>
// CHECK: %[[VAL_13:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_6]]] : memref<?xindex>
// CHECK: %[[VAL_14:.*]]:2 = scf.while (%[[VAL_15:.*]] = %[[VAL_12]], %[[VAL_16:.*]] = %[[VAL_4]]) : (index, index) -> (index, index) {
// CHECK: %[[VAL_17:.*]] = arith.cmpi ult, %[[VAL_15]], %[[VAL_13]] : index
// CHECK: scf.condition(%[[VAL_17]]) %[[VAL_15]], %[[VAL_16]] : index, index
// CHECK: } do {
// CHECK: ^bb0(%[[VAL_18:.*]]: index, %[[VAL_19:.*]]: index):
// CHECK: %[[VAL_20:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_18]]] : memref<?xindex>
// CHECK: %[[VAL_21:.*]] = arith.cmpi eq, %[[VAL_20]], %[[VAL_19]] : index
// CHECK: scf.if %[[VAL_21]] {
// CHECK: %[[VAL_22:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_18]]] : memref<?xf64>
// CHECK: %[[VAL_23:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_19]]] : memref<32xf64>
// CHECK: %[[VAL_24:.*]] = arith.subf %[[VAL_22]], %[[VAL_23]] : f64
// CHECK: memref.store %[[VAL_24]], %[[VAL_11]]{{\[}}%[[VAL_19]]] : memref<32xf64>
// CHECK: } else {
// CHECK: scf.if %[[VAL_5]] {
// CHECK: %[[VAL_25:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_19]]] : memref<32xf64>
// CHECK: %[[VAL_26:.*]] = arith.negf %[[VAL_25]] : f64
// CHECK: memref.store %[[VAL_26]], %[[VAL_11]]{{\[}}%[[VAL_19]]] : memref<32xf64>
// CHECK: } else {
// CHECK: }
// CHECK: }
// CHECK: %[[VAL_27:.*]] = arith.cmpi eq, %[[VAL_20]], %[[VAL_19]] : index
// CHECK: %[[VAL_28:.*]] = arith.addi %[[VAL_18]], %[[VAL_6]] : index
// CHECK: %[[VAL_29:.*]] = arith.select %[[VAL_27]], %[[VAL_28]], %[[VAL_18]] : index
// CHECK: %[[VAL_30:.*]] = arith.addi %[[VAL_19]], %[[VAL_6]] : index
// CHECK: scf.yield %[[VAL_29]], %[[VAL_30]] : index, index
// CHECK: }
// CHECK: scf.for %[[VAL_31:.*]] = %[[VAL_32:.*]]#1 to %[[VAL_3]] step %[[VAL_6]] {
// CHECK: %[[VAL_33:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_31]]] : memref<32xf64>
// CHECK: %[[VAL_34:.*]] = arith.negf %[[VAL_33]] : f64
// CHECK: memref.store %[[VAL_34]], %[[VAL_11]]{{\[}}%[[VAL_31]]] : memref<32xf64>
// CHECK: }
// CHECK: %[[VAL_35:.*]] = bufferization.to_tensor %[[VAL_11]] : memref<32xf64>
// CHECK: return %[[VAL_35]] : tensor<32xf64>
// CHECK: }
func.func @sub(%arga: tensor<32xf64, #SV>,
%argb: tensor<32xf64>,
%argx: tensor<32xf64>) -> tensor<32xf64> {
%0 = linalg.generic #trait2
ins(%arga, %argb: tensor<32xf64, #SV>, tensor<32xf64>)
outs(%argx: tensor<32xf64>) {
^bb(%a: f64, %b: f64, %x: f64):
%0 = arith.subf %a, %b : f64
linalg.yield %0 : f64
} -> tensor<32xf64>
return %0 : tensor<32xf64>
}
// CHECK-LABEL: func @mul(
// CHECK-SAME: %[[VAL_0:.*]]: tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>>,
// CHECK-SAME: %[[VAL_1:.*]]: tensor<32xf64>,
// CHECK-SAME: %[[VAL_2:.*]]: tensor<32xf64>) -> tensor<32xf64> {
// CHECK-DAG: %[[VAL_3:.*]] = arith.constant 0 : index
// CHECK-DAG: %[[VAL_4:.*]] = arith.constant 1 : index
// CHECK: %[[VAL_5:.*]] = sparse_tensor.positions %[[VAL_0]] {level = 0 : index} : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>>
// CHECK: %[[VAL_6:.*]] = sparse_tensor.coordinates %[[VAL_0]] {level = 0 : index} : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>>
// CHECK: %[[VAL_7:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>>
// CHECK: %[[VAL_8:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32xf64>
// CHECK: %[[VAL_9:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32xf64>
// CHECK: %[[VAL_10:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_3]]] : memref<?xindex>
// CHECK: %[[VAL_11:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_4]]] : memref<?xindex>
// CHECK: scf.for %[[VAL_12:.*]] = %[[VAL_10]] to %[[VAL_11]] step %[[VAL_4]] {
// CHECK: %[[VAL_13:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_12]]] : memref<?xindex>
// CHECK: %[[VAL_14:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_12]]] : memref<?xf64>
// CHECK: %[[VAL_15:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_13]]] : memref<32xf64>
// CHECK: %[[VAL_16:.*]] = arith.mulf %[[VAL_14]], %[[VAL_15]] : f64
// CHECK: memref.store %[[VAL_16]], %[[VAL_9]]{{\[}}%[[VAL_13]]] : memref<32xf64>
// CHECK: }
// CHECK: %[[VAL_17:.*]] = bufferization.to_tensor %[[VAL_9]] : memref<32xf64>
// CHECK: return %[[VAL_17]] : tensor<32xf64>
// CHECK: }
func.func @mul(%arga: tensor<32xf64, #SV>,
%argb: tensor<32xf64>,
%argx: tensor<32xf64>) -> tensor<32xf64> {
%0 = linalg.generic #trait2
ins(%arga, %argb: tensor<32xf64, #SV>, tensor<32xf64>)
outs(%argx: tensor<32xf64>) {
^bb(%a: f64, %b: f64, %x: f64):
%0 = arith.mulf %a, %b : f64
linalg.yield %0 : f64
} -> tensor<32xf64>
return %0 : tensor<32xf64>
}
// CHECK-LABEL: func @divbyc(
// CHECK-SAME: %[[VAL_0:.*]]: tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>>,
// CHECK-SAME: %[[VAL_1:.*]]: tensor<32xf64>) -> tensor<32xf64> {
// CHECK-DAG: %[[VAL_2:.*]] = arith.constant 2.000000e+00 : f64
// CHECK-DAG: %[[VAL_3:.*]] = arith.constant 0 : index
// CHECK-DAG: %[[VAL_4:.*]] = arith.constant 1 : index
// CHECK: %[[VAL_5:.*]] = sparse_tensor.positions %[[VAL_0]] {level = 0 : index} : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>>
// CHECK: %[[VAL_6:.*]] = sparse_tensor.coordinates %[[VAL_0]] {level = 0 : index} : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>>
// CHECK: %[[VAL_7:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>>
// CHECK: %[[VAL_8:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32xf64>
// CHECK: %[[VAL_9:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_3]]] : memref<?xindex>
// CHECK: %[[VAL_10:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_4]]] : memref<?xindex>
// CHECK: scf.for %[[VAL_11:.*]] = %[[VAL_9]] to %[[VAL_10]] step %[[VAL_4]] {
// CHECK: %[[VAL_12:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_11]]] : memref<?xindex>
// CHECK: %[[VAL_13:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_11]]] : memref<?xf64>
// CHECK: %[[VAL_14:.*]] = arith.divf %[[VAL_13]], %[[VAL_2]] : f64
// CHECK: memref.store %[[VAL_14]], %[[VAL_8]]{{\[}}%[[VAL_12]]] : memref<32xf64>
// CHECK: }
// CHECK: %[[VAL_15:.*]] = bufferization.to_tensor %[[VAL_8]] : memref<32xf64>
// CHECK: return %[[VAL_15]] : tensor<32xf64>
// CHECK: }
func.func @divbyc(%arga: tensor<32xf64, #SV>,
%argx: tensor<32xf64>) -> tensor<32xf64> {
%c = arith.constant 2.0 : f64
%0 = linalg.generic #traitc
ins(%arga: tensor<32xf64, #SV>)
outs(%argx: tensor<32xf64>) {
^bb(%a: f64, %x: f64):
%0 = arith.divf %a, %c : f64
linalg.yield %0 : f64
} -> tensor<32xf64>
return %0 : tensor<32xf64>
}
// CHECK-LABEL: func.func @zero_preserving_math(
// CHECK-SAME: %[[VAL_0:.*]]: tensor<32xf64, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>>) -> tensor<32xf64, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> {
// CHECK-DAG: %[[VAL_1:.*]] = arith.constant 0 : index
// CHECK-DAG: %[[VAL_2:.*]] = arith.constant 1 : index
// CHECK: %[[VAL_3:.*]] = bufferization.alloc_tensor() : tensor<32xf64, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>>
// CHECK: %[[VAL_4:.*]] = sparse_tensor.positions %[[VAL_0]] {level = 0 : index} : tensor<32xf64, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xindex>
// CHECK: %[[VAL_5:.*]] = sparse_tensor.coordinates %[[VAL_0]] {level = 0 : index} : tensor<32xf64, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xindex>
// CHECK: %[[VAL_6:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xf64, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xf64>
// CHECK: %[[VAL_7:.*]] = memref.load %[[VAL_4]]{{\[}}%[[VAL_1]]] : memref<?xindex>
// CHECK: %[[VAL_8:.*]] = memref.load %[[VAL_4]]{{\[}}%[[VAL_2]]] : memref<?xindex>
// CHECK: %[[T:.*]] = scf.for %[[VAL_9:.*]] = %[[VAL_7]] to %[[VAL_8]] step %[[VAL_2]] {{.*}} {
// CHECK: %[[VAL_10:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_9]]] : memref<?xindex>
// CHECK: %[[VAL_11:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_9]]] : memref<?xf64>
// CHECK: %[[VAL_12:.*]] = math.absf %[[VAL_11]] : f64
// CHECK: %[[VAL_13:.*]] = math.ceil %[[VAL_12]] : f64
// CHECK: %[[VAL_14:.*]] = math.floor %[[VAL_13]] : f64
// CHECK: %[[VAL_15:.*]] = math.sqrt %[[VAL_14]] : f64
// CHECK: %[[VAL_16:.*]] = math.expm1 %[[VAL_15]] : f64
// CHECK: %[[VAL_17:.*]] = math.log1p %[[VAL_16]] : f64
// CHECK: %[[VAL_18:.*]] = math.sin %[[VAL_17]] : f64
// CHECK: %[[VAL_19:.*]] = math.tanh %[[VAL_18]] : f64
// CHECK: %[[Y:.*]] = sparse_tensor.insert %[[VAL_19]] into %{{.*}}[%[[VAL_10]]] : tensor<32xf64, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>>
// CHECK: scf.yield %[[Y]]
// CHECK: }
// CHECK: %[[VAL_20:.*]] = sparse_tensor.load %[[T]] hasInserts : tensor<32xf64, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>>
// CHECK: return %[[VAL_20]] : tensor<32xf64, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>>
// CHECK: }
func.func @zero_preserving_math(%arga: tensor<32xf64, #SV>) -> tensor<32xf64, #SV> {
%c32 = arith.constant 32 : index
%xinp = bufferization.alloc_tensor() : tensor<32xf64, #SV>
%0 = linalg.generic #trait1
ins(%arga: tensor<32xf64, #SV>)
outs(%xinp: tensor<32xf64, #SV>) {
^bb(%a: f64, %x: f64):
%0 = math.absf %a : f64
%1 = math.ceil %0 : f64
%2 = math.floor %1 : f64
%3 = math.sqrt %2 : f64
%4 = math.expm1 %3 : f64
%5 = math.log1p %4 : f64
%6 = math.sin %5 : f64
%7 = math.tanh %6 : f64
linalg.yield %7 : f64
} -> tensor<32xf64, #SV>
return %0 : tensor<32xf64, #SV>
}
// CHECK-LABEL: func.func @complex_divbyc(
// CHECK-SAME: %[[VAL_0:.*]]: tensor<32xcomplex<f64>, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>>) -> tensor<32xcomplex<f64>, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> {
// CHECK-DAG: %[[VAL_1:.*]] = arith.constant 0 : index
// CHECK-DAG: %[[VAL_2:.*]] = arith.constant 1 : index
// CHECK: %[[VAL_3:.*]] = complex.constant [0.000000e+00, 1.000000e+00] : complex<f64>
// CHECK: %[[VAL_4:.*]] = bufferization.alloc_tensor() : tensor<32xcomplex<f64>, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>>
// CHECK: %[[VAL_5:.*]] = sparse_tensor.positions %[[VAL_0]] {level = 0 : index} : tensor<32xcomplex<f64>, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xindex>
// CHECK: %[[VAL_6:.*]] = sparse_tensor.coordinates %[[VAL_0]] {level = 0 : index} : tensor<32xcomplex<f64>, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xindex>
// CHECK: %[[VAL_7:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xcomplex<f64>, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>> to memref<?xcomplex<f64>>
// CHECK: %[[VAL_8:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_1]]] : memref<?xindex>
// CHECK: %[[VAL_9:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_2]]] : memref<?xindex>
// CHECK: %[[T:.*]] = scf.for %[[VAL_10:.*]] = %[[VAL_8]] to %[[VAL_9]] step %[[VAL_2]] {{.*}} {
// CHECK: %[[VAL_11:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_10]]] : memref<?xindex>
// CHECK: %[[VAL_12:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_10]]] : memref<?xcomplex<f64>>
// CHECK: %[[VAL_13:.*]] = complex.div %[[VAL_12]], %[[VAL_3]] : complex<f64>
// CHECK: %[[Y:.*]] = sparse_tensor.insert %[[VAL_13]] into %{{.*}}[%[[VAL_11]]] : tensor<32xcomplex<f64>, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>>
// CHECK: scf.yield %[[Y]]
// CHECK: }
// CHECK: %[[VAL_14:.*]] = sparse_tensor.load %[[T]] hasInserts : tensor<32xcomplex<f64>, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>>
// CHECK: return %[[VAL_14]] : tensor<32xcomplex<f64>, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>>
// CHECK: }
func.func @complex_divbyc(%arg0: tensor<32xcomplex<f64>, #SV>) -> tensor<32xcomplex<f64>, #SV> {
%c = complex.constant [0.0, 1.0] : complex<f64>
%init = bufferization.alloc_tensor() : tensor<32xcomplex<f64>, #SV>
%0 = linalg.generic #traitc
ins(%arg0: tensor<32xcomplex<f64>, #SV>)
outs(%init: tensor<32xcomplex<f64>, #SV>) {
^bb(%a: complex<f64>, %x: complex<f64>):
%0 = complex.div %a, %c : complex<f64>
linalg.yield %0 : complex<f64>
} -> tensor<32xcomplex<f64>, #SV>
return %0 : tensor<32xcomplex<f64>, #SV>
}
|