1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
|
// RUN: mlir-opt %s -sparsification -cse -split-input-file | \
// RUN: FileCheck %s --check-prefix=CHECK-SCALAR
// RUN: mlir-opt %s -sparsification -cse -sparse-vectorization="vl=16" -cse -split-input-file | \
// RUN: FileCheck %s --check-prefix=CHECK-VEC16
// RUN: mlir-opt %s -sparsification -cse -sparse-vectorization="vl=16 enable-simd-index32=true" -cse -split-input-file | \
// RUN: FileCheck %s --check-prefix=CHECK-VEC16-IDX32
// RUN: mlir-opt %s -sparsification -cse -sparse-vectorization="vl=4 enable-vla-vectorization=true" -cse -split-input-file | \
// RUN: FileCheck %s --check-prefix=CHECK-VEC4-SVE
#DenseVector = #sparse_tensor.encoding<{ lvlTypes = [ "dense" ] }>
#trait_scale_d = {
indexing_maps = [
affine_map<(i) -> (i)>, // a
affine_map<(i) -> (i)> // x (out)
],
iterator_types = ["parallel"],
doc = "x(i) = a(i) * b"
}
//
// CHECK-SCALAR-LABEL: func @scale_d
// CHECK-SCALAR-DAG: %[[c0:.*]] = arith.constant 0 : index
// CHECK-SCALAR-DAG: %[[c1:.*]] = arith.constant 1 : index
// CHECK-SCALAR-DAG: %[[c1024:.*]] = arith.constant 1024 : index
// CHECK-SCALAR: scf.for %[[i:.*]] = %[[c0]] to %[[c1024]] step %[[c1]] {
// CHECK-SCALAR: %[[l:.*]] = memref.load %{{.*}}[%[[i]]] : memref<?xf32>
// CHECK-SCALAR: %[[m:.*]] = arith.mulf %[[l]], %{{.*}} : f32
// CHECK-SCALAR: store %[[m]], %{{.*}}[%[[i]]] : memref<1024xf32>
// CHECK-SCALAR: }
// CHECK-SCALAR: return
//
// CHECK-VEC16-LABEL: func @scale_d
// CHECK-VEC16-DAG: %[[c0:.*]] = arith.constant 0 : index
// CHECK-VEC16-DAG: %[[c16:.*]] = arith.constant 16 : index
// CHECK-VEC16-DAG: %[[c1024:.*]] = arith.constant 1024 : index
// CHECK-VEC16: scf.for %[[i:.*]] = %[[c0]] to %[[c1024]] step %[[c16]] {
// CHECK-VEC16: %[[r:.*]] = vector.load %{{.*}}[%[[i]]] : memref<?xf32>, vector<16xf32>
// CHECK-VEC16: %[[b:.*]] = vector.broadcast %{{.*}} : f32 to vector<16xf32>
// CHECK-VEC16: %[[m:.*]] = arith.mulf %[[r]], %[[b]] : vector<16xf32>
// CHECK-VEC16: vector.store %[[m]], %{{.*}}[%[[i]]] : memref<1024xf32>, vector<16xf32>
// CHECK-VEC16: }
// CHECK-VEC16: return
//
// CHECK-VEC16-IDX32-LABEL: func @scale_d
// CHECK-VEC16-IDX32-DAG: %[[c0:.*]] = arith.constant 0 : index
// CHECK-VEC16-IDX32-DAG: %[[c16:.*]] = arith.constant 16 : index
// CHECK-VEC16-IDX32-DAG: %[[c1024:.*]] = arith.constant 1024 : index
// CHECK-VEC16-IDX32: scf.for %[[i:.*]] = %[[c0]] to %[[c1024]] step %[[c16]] {
// CHECK-VEC16-IDX32: %[[r:.*]] = vector.load %{{.*}}[%[[i]]] : memref<?xf32>, vector<16xf32>
// CHECK-VEC16-IDX32: %[[b:.*]] = vector.broadcast %{{.*}} : f32 to vector<16xf32>
// CHECK-VEC16-IDX32: %[[m:.*]] = arith.mulf %[[r]], %[[b]] : vector<16xf32>
// CHECK-VEC16-IDX32: vector.store %[[m]], %{{.*}}[%[[i]]] : memref<1024xf32>, vector<16xf32>
// CHECK-VEC16-IDX32: }
// CHECK-VEC16-IDX32: return
//
// CHECK-VEC4-SVE: #[[$map:.*]] = affine_map<(d0, d1)[s0] -> (s0, d0 - d1)
// CHECK-VEC4-SVE-LABEL: func @scale_d
// CHECK-VEC4-SVE-DAG: %[[c0:.*]] = arith.constant 0 : index
// CHECK-VEC4-SVE-DAG: %[[c4:.*]] = arith.constant 4 : index
// CHECK-VEC4-SVE-DAG: %[[c1024:.*]] = arith.constant 1024 : index
// CHECK-VEC4-SVE-DAG: %[[v0:.*]] = arith.constant dense<0.000000e+00> : vector<[4]xf32>
// CHECK-VEC4-SVE-DAG: %[[vscale:.*]] = vector.vscale
// CHECK-VEC4-SVE: %[[step:.*]] = arith.muli %[[vscale]], %[[c4]] : index
// CHECK-VEC4-SVE: scf.for %[[i:.*]] = %[[c0]] to %[[c1024]] step %[[step]] {
// CHECK-VEC4-SVE: %[[sub:.*]] = affine.min #[[$map]](%[[c1024]], %[[i]])[%[[step]]]
// CHECK-VEC4-SVE: %[[mask:.*]] = vector.create_mask %[[sub]] : vector<[4]xi1>
// CHECK-VEC4-SVE: %[[val:.*]] = vector.maskedload %{{.*}}[%[[i]]], %[[mask]], %[[v0]] : memref<?xf32>, vector<[4]xi1>, vector<[4]xf32> into vector<[4]xf32>
// CHECK-VEC4-SVE: %[[scalev:.*]] = vector.broadcast %{{.*}} : f32 to vector<[4]xf32>
// CHECK-VEC4-SVE: %[[scaled:.*]] = arith.mulf %[[val]], %[[scalev]] : vector<[4]xf32>
// CHECK-VEC4-SVE: vector.maskedstore %{{.*}}[%[[i]]], %[[mask]], %[[scaled]] : memref<1024xf32>, vector<[4]xi1>, vector<[4]xf32>
// CHECK-VEC4-SVE: }
// CHECK-VEC4-SVE: return
//
func.func @scale_d(%arga: tensor<1024xf32, #DenseVector>, %b: f32, %argx: tensor<1024xf32>) -> tensor<1024xf32> {
%0 = linalg.generic #trait_scale_d
ins(%arga: tensor<1024xf32, #DenseVector>)
outs(%argx: tensor<1024xf32>) {
^bb(%a: f32, %x: f32):
%0 = arith.mulf %a, %b : f32
linalg.yield %0 : f32
} -> tensor<1024xf32>
return %0 : tensor<1024xf32>
}
// -----
#SparseVector = #sparse_tensor.encoding<{
lvlTypes = [ "compressed" ],
posWidth = 32,
crdWidth = 32
}>
#trait_mul_s = {
indexing_maps = [
affine_map<(i) -> (i)>, // a
affine_map<(i) -> (i)>, // b
affine_map<(i) -> (i)> // x (out)
],
iterator_types = ["parallel"],
doc = "x(i) = a(i) * b(i)"
}
//
// CHECK-SCALAR-LABEL: func @mul_s
// CHECK-SCALAR-DAG: %[[c0:.*]] = arith.constant 0 : index
// CHECK-SCALAR-DAG: %[[c1:.*]] = arith.constant 1 : index
// CHECK-SCALAR: %[[p:.*]] = memref.load %{{.*}}[%[[c0]]] : memref<?xi32>
// CHECK-SCALAR: %[[a:.*]] = arith.extui %[[p]] : i32 to i64
// CHECK-SCALAR: %[[q:.*]] = arith.index_cast %[[a]] : i64 to index
// CHECK-SCALAR: %[[r:.*]] = memref.load %{{.*}}[%[[c1]]] : memref<?xi32>
// CHECK-SCALAR: %[[b:.*]] = arith.extui %[[r]] : i32 to i64
// CHECK-SCALAR: %[[s:.*]] = arith.index_cast %[[b]] : i64 to index
// CHECK-SCALAR: scf.for %[[i:.*]] = %[[q]] to %[[s]] step %[[c1]] {
// CHECK-SCALAR: %[[li:.*]] = memref.load %{{.*}}[%[[i]]] : memref<?xi32>
// CHECK-SCALAR: %[[zi:.*]] = arith.extui %[[li]] : i32 to i64
// CHECK-SCALAR: %[[ci:.*]] = arith.index_cast %[[zi]] : i64 to index
// CHECK-SCALAR: %[[la:.*]] = memref.load %{{.*}}[%[[i]]] : memref<?xf32>
// CHECK-SCALAR: %[[lb:.*]] = memref.load %{{.*}}[%[[ci]]] : memref<1024xf32>
// CHECK-SCALAR: %[[m:.*]] = arith.mulf %[[la]], %[[lb]] : f32
// CHECK-SCALAR: store %[[m]], %{{.*}}[%[[ci]]] : memref<1024xf32>
// CHECK-SCALAR: }
// CHECK-SCALAR: return
//
// CHECK-VEC16: #[[$map:.*]] = affine_map<(d0, d1)[s0] -> (16, d0 - d1)
// CHECK-VEC16-LABEL: func @mul_s
// CHECK-VEC16-DAG: %[[c0:.*]] = arith.constant 0 : index
// CHECK-VEC16-DAG: %[[c1:.*]] = arith.constant 1 : index
// CHECK-VEC16-DAG: %[[c16:.*]] = arith.constant 16 : index
// CHECK-VEC16: %[[p:.*]] = memref.load %{{.*}}[%[[c0]]] : memref<?xi32>
// CHECK-VEC16: %[[a:.*]] = arith.extui %[[p]] : i32 to i64
// CHECK-VEC16: %[[q:.*]] = arith.index_cast %[[a]] : i64 to index
// CHECK-VEC16: %[[r:.*]] = memref.load %{{.*}}[%[[c1]]] : memref<?xi32>
// CHECK-VEC16: %[[b:.*]] = arith.extui %[[r]] : i32 to i64
// CHECK-VEC16: %[[s:.*]] = arith.index_cast %[[b]] : i64 to index
// CHECK-VEC16: scf.for %[[i:.*]] = %[[q]] to %[[s]] step %[[c16]] {
// CHECK-VEC16: %[[sub:.*]] = affine.min #[[$map]](%[[s]], %[[i]])[%[[c16]]]
// CHECK-VEC16: %[[mask:.*]] = vector.create_mask %[[sub]] : vector<16xi1>
// CHECK-VEC16: %[[li:.*]] = vector.maskedload %{{.*}}[%[[i]]], %[[mask]], %{{.*}} : memref<?xi32>, vector<16xi1>, vector<16xi32> into vector<16xi32>
// CHECK-VEC16: %[[zi:.*]] = arith.extui %[[li]] : vector<16xi32> to vector<16xi64>
// CHECK-VEC16: %[[la:.*]] = vector.maskedload %{{.*}}[%[[i]]], %[[mask]], %{{.*}} : memref<?xf32>, vector<16xi1>, vector<16xf32> into vector<16xf32>
// CHECK-VEC16: %[[lb:.*]] = vector.gather %{{.*}}[%[[c0]]] [%[[zi]]], %[[mask]], %{{.*}} : memref<1024xf32>, vector<16xi64>, vector<16xi1>, vector<16xf32> into vector<16xf32>
// CHECK-VEC16: %[[m:.*]] = arith.mulf %[[la]], %[[lb]] : vector<16xf32>
// CHECK-VEC16: vector.scatter %{{.*}}[%[[c0]]] [%[[zi]]], %[[mask]], %[[m]] : memref<1024xf32>, vector<16xi64>, vector<16xi1>, vector<16xf32>
// CHECK-VEC16: }
// CHECK-VEC16: return
//
// CHECK-VEC16-IDX32: #[[$map:.*]] = affine_map<(d0, d1)[s0] -> (16, d0 - d1)
// CHECK-VEC16-IDX32-LABEL: func @mul_s
// CHECK-VEC16-IDX32-DAG: %[[c0:.*]] = arith.constant 0 : index
// CHECK-VEC16-IDX32-DAG: %[[c1:.*]] = arith.constant 1 : index
// CHECK-VEC16-IDX32-DAG: %[[c16:.*]] = arith.constant 16 : index
// CHECK-VEC16-IDX32: %[[p:.*]] = memref.load %{{.*}}[%[[c0]]] : memref<?xi32>
// CHECK-VEC16-IDX32: %[[a:.*]] = arith.extui %[[p]] : i32 to i64
// CHECK-VEC16-IDX32: %[[q:.*]] = arith.index_cast %[[a]] : i64 to index
// CHECK-VEC16-IDX32: %[[r:.*]] = memref.load %{{.*}}[%[[c1]]] : memref<?xi32>
// CHECK-VEC16-IDX32: %[[b:.*]] = arith.extui %[[r]] : i32 to i64
// CHECK-VEC16-IDX32: %[[s:.*]] = arith.index_cast %[[b]] : i64 to index
// CHECK-VEC16-IDX32: scf.for %[[i:.*]] = %[[q]] to %[[s]] step %[[c16]] {
// CHECK-VEC16-IDX32: %[[sub:.*]] = affine.min #[[$map]](%[[s]], %[[i]])[%[[c16]]]
// CHECK-VEC16-IDX32: %[[mask:.*]] = vector.create_mask %[[sub]] : vector<16xi1>
// CHECK-VEC16-IDX32: %[[li:.*]] = vector.maskedload %{{.*}}[%[[i]]], %[[mask]], %{{.*}} : memref<?xi32>, vector<16xi1>, vector<16xi32> into vector<16xi32>
// CHECK-VEC16-IDX32: %[[la:.*]] = vector.maskedload %{{.*}}[%[[i]]], %[[mask]], %{{.*}} : memref<?xf32>, vector<16xi1>, vector<16xf32> into vector<16xf32>
// CHECK-VEC16-IDX32: %[[lb:.*]] = vector.gather %{{.*}}[%[[c0]]] [%[[li]]], %[[mask]], %{{.*}} : memref<1024xf32>, vector<16xi32>, vector<16xi1>, vector<16xf32> into vector<16xf32>
// CHECK-VEC16-IDX32: %[[m:.*]] = arith.mulf %[[la]], %[[lb]] : vector<16xf32>
// CHECK-VEC16-IDX32: vector.scatter %{{.*}}[%[[c0]]] [%[[li]]], %[[mask]], %[[m]] : memref<1024xf32>, vector<16xi32>, vector<16xi1>, vector<16xf32>
// CHECK-VEC16-IDX32: }
// CHECK-VEC16-IDX32: return
//
// CHECK-VEC4-SVE: #[[$map:.*]] = affine_map<(d0, d1)[s0] -> (s0, d0 - d1)
// CHECK-VEC4-SVE-LABEL: func @mul_s
// CHECK-VEC4-SVE-DAG: %[[c0:.*]] = arith.constant 0 : index
// CHECK-VEC4-SVE-DAG: %[[c1:.*]] = arith.constant 1 : index
// CHECK-VEC4-SVE-DAG: %[[c4:.*]] = arith.constant 4 : index
// CHECK-VEC4-SVE-DAG: %[[v0i:.*]] = arith.constant dense<0> : vector<[4]xi32>
// CHECK-VEC4-SVE-DAG: %[[v0f:.*]] = arith.constant dense<0.000000e+00> : vector<[4]xf32>
// CHECK-VEC4-SVE: %[[p:.*]] = memref.load %{{.*}}[%[[c0]]] : memref<?xi32>
// CHECK-VEC4-SVE: %[[a:.*]] = arith.extui %[[p]] : i32 to i64
// CHECK-VEC4-SVE: %[[q:.*]] = arith.index_cast %[[a]] : i64 to index
// CHECK-VEC4-SVE: %[[r:.*]] = memref.load %{{.*}}[%[[c1]]] : memref<?xi32>
// CHECK-VEC4-SVE: %[[b:.*]] = arith.extui %[[r]] : i32 to i64
// CHECK-VEC4-SVE: %[[s:.*]] = arith.index_cast %[[b]] : i64 to index
// CHECK-VEC4-SVE: %[[vscale:.*]] = vector.vscale
// CHECK-VEC4-SVE: %[[step:.*]] = arith.muli %[[vscale]], %[[c4]] : index
// CHECK-VEC4-SVE: scf.for %[[i:.*]] = %[[q]] to %[[s]] step %[[step]] {
// CHECK-VEC4-SVE: %[[sub:.*]] = affine.min #[[$map]](%[[s]], %[[i]])[%[[step]]]
// CHECK-VEC4-SVE: %[[mask:.*]] = vector.create_mask %[[sub]] : vector<[4]xi1>
// CHECK-VEC4-SVE: %[[li:.*]] = vector.maskedload %{{.*}}[%[[i]]], %[[mask]], %[[v0i]] : memref<?xi32>, vector<[4]xi1>, vector<[4]xi32> into vector<[4]xi32>
// CHECK-VEC4-SVE: %[[lii64:.*]] = arith.extui %[[li]] : vector<[4]xi32> to vector<[4]xi64>
// CHECK-VEC4-SVE: %[[la:.*]] = vector.maskedload %{{.*}}[%[[i]]], %[[mask]], %[[v0f]] : memref<?xf32>, vector<[4]xi1>, vector<[4]xf32> into vector<[4]xf32>
// CHECK-VEC4-SVE: %[[lb:.*]] = vector.gather %{{.*}}[%[[c0]]] [%[[lii64]]], %[[mask]], %[[v0f]] : memref<1024xf32>, vector<[4]xi64>, vector<[4]xi1>, vector<[4]xf32> into vector<[4]xf32>
// CHECK-VEC4-SVE: %[[m:.*]] = arith.mulf %[[la]], %[[lb]] : vector<[4]xf32>
// CHECK-VEC4-SVE: vector.scatter %{{.*}}[%[[c0]]] [%[[lii64]]], %[[mask]], %[[m]] : memref<1024xf32>, vector<[4]xi64>, vector<[4]xi1>, vector<[4]xf32>
// CHECK-VEC4-SVE: }
// CHECK-VEC4-SVE: return
//
func.func @mul_s(%arga: tensor<1024xf32, #SparseVector>,
%argb: tensor<1024xf32>,
%argx: tensor<1024xf32>) -> tensor<1024xf32> {
%0 = linalg.generic #trait_mul_s
ins(%arga, %argb: tensor<1024xf32, #SparseVector>, tensor<1024xf32>)
outs(%argx: tensor<1024xf32>) {
^bb(%a: f32, %b: f32, %x: f32):
%0 = arith.mulf %a, %b : f32
linalg.yield %0 : f32
} -> tensor<1024xf32>
return %0 : tensor<1024xf32>
}
// -----
#DenseVector = #sparse_tensor.encoding<{ lvlTypes = [ "dense" ] }>
#trait_reduction_d = {
indexing_maps = [
affine_map<(i) -> (i)>, // a
affine_map<(i) -> (i)>, // b
affine_map<(i) -> ()> // x (out)
],
iterator_types = ["reduction"],
doc = "x += a(i) * b(i)"
}
//
// CHECK-SCALAR-LABEL: func @reduction_d
// CHECK-SCALAR-DAG: %[[c0:.*]] = arith.constant 0 : index
// CHECK-SCALAR-DAG: %[[c1:.*]] = arith.constant 1 : index
// CHECK-SCALAR-DAG: %[[c1024:.*]] = arith.constant 1024 : index
// CHECK-SCALAR: %[[red:.*]] = scf.for %[[i:.*]] = %[[c0]] to %[[c1024]] step %[[c1]] iter_args(%[[red_in:.*]] = %{{.*}}) -> (f32) {
// CHECK-SCALAR: %[[la:.*]] = memref.load %{{.*}}[%[[i]]] : memref<?xf32>
// CHECK-SCALAR: %[[lb:.*]] = memref.load %{{.*}}[%[[i]]] : memref<1024xf32>
// CHECK-SCALAR: %[[m:.*]] = arith.mulf %[[la]], %[[lb]] : f32
// CHECK-SCALAR: %[[a:.*]] = arith.addf %[[red_in]], %[[m]] : f32
// CHECK-SCALAR: scf.yield %[[a]] : f32
// CHECK-SCALAR: }
// CHECK-SCALAR: return
//
// CHECK-VEC16-LABEL: func @reduction_d
// CHECK-VEC16-DAG: %[[c0:.*]] = arith.constant 0 : index
// CHECK-VEC16-DAG: %[[c16:.*]] = arith.constant 16 : index
// CHECK-VEC16-DAG: %[[c1024:.*]] = arith.constant 1024 : index
// CHECK-VEC16-DAG: %[[v0:.*]] = arith.constant dense<0.000000e+00> : vector<16xf32>
// CHECK-VEC16: %[[l:.*]] = memref.load %{{.*}}[] : memref<f32>
// CHECK-VEC16: %[[r:.*]] = vector.insertelement %[[l]], %[[v0]][%[[c0]] : index] : vector<16xf32>
// CHECK-VEC16: %[[red:.*]] = scf.for %[[i:.*]] = %[[c0]] to %[[c1024]] step %[[c16]] iter_args(%[[red_in:.*]] = %[[r]]) -> (vector<16xf32>) {
// CHECK-VEC16: %[[la:.*]] = vector.load %{{.*}}[%[[i]]] : memref<?xf32>, vector<16xf32>
// CHECK-VEC16: %[[lb:.*]] = vector.load %{{.*}}[%[[i]]] : memref<1024xf32>, vector<16xf32>
// CHECK-VEC16: %[[m:.*]] = arith.mulf %[[la]], %[[lb]] : vector<16xf32>
// CHECK-VEC16: %[[a:.*]] = arith.addf %[[red_in]], %[[m]] : vector<16xf32>
// CHECK-VEC16: scf.yield %[[a]] : vector<16xf32>
// CHECK-VEC16: }
// CHECK-VEC16: %{{.*}} = vector.reduction <add>, %[[red]] : vector<16xf32> into f32
// CHECK-VEC16: return
//
// CHECK-VEC16-IDX32-LABEL: func @reduction_d
// CHECK-VEC16-IDX32-DAG: %[[c0:.*]] = arith.constant 0 : index
// CHECK-VEC16-IDX32-DAG: %[[c16:.*]] = arith.constant 16 : index
// CHECK-VEC16-IDX32-DAG: %[[c1024:.*]] = arith.constant 1024 : index
// CHECK-VEC16-IDX32-DAG: %[[v0:.*]] = arith.constant dense<0.000000e+00> : vector<16xf32>
// CHECK-VEC16-IDX32: %[[l:.*]] = memref.load %{{.*}}[] : memref<f32>
// CHECK-VEC16-IDX32: %[[r:.*]] = vector.insertelement %[[l]], %[[v0]][%[[c0]] : index] : vector<16xf32>
// CHECK-VEC16-IDX32: %[[red:.*]] = scf.for %[[i:.*]] = %[[c0]] to %[[c1024]] step %[[c16]] iter_args(%[[red_in:.*]] = %[[r]]) -> (vector<16xf32>) {
// CHECK-VEC16-IDX32: %[[la:.*]] = vector.load %{{.*}}[%[[i]]] : memref<?xf32>, vector<16xf32>
// CHECK-VEC16-IDX32: %[[lb:.*]] = vector.load %{{.*}}[%[[i]]] : memref<1024xf32>, vector<16xf32>
// CHECK-VEC16-IDX32: %[[m:.*]] = arith.mulf %[[la]], %[[lb]] : vector<16xf32>
// CHECK-VEC16-IDX32: %[[a:.*]] = arith.addf %[[red_in]], %[[m]] : vector<16xf32>
// CHECK-VEC16-IDX32: scf.yield %[[a]] : vector<16xf32>
// CHECK-VEC16-IDX32: }
// CHECK-VEC16-IDX32: %{{.*}} = vector.reduction <add>, %[[red]] : vector<16xf32> into f32
// CHECK-VEC16-IDX32: return
//
// CHECK-VEC4-SVE: #[[$map:.*]] = affine_map<(d0, d1)[s0] -> (s0, d0 - d1)
// CHECK-VEC4-SVE-LABEL: func @reduction_d
// CHECK-VEC4-SVE-DAG: %[[c0:.*]] = arith.constant 0 : index
// CHECK-VEC4-SVE-DAG: %[[c4:.*]] = arith.constant 4 : index
// CHECK-VEC4-SVE-DAG: %[[c1024:.*]] = arith.constant 1024 : index
// CHECK-VEC4-SVE-DAG: %[[v0:.*]] = arith.constant dense<0.000000e+00> : vector<[4]xf32>
// CHECK-VEC4-SVE: %[[l:.*]] = memref.load %{{.*}}[] : memref<f32>
// CHECK-VEC4-SVE: %[[vscale:.*]] = vector.vscale
// CHECK-VEC4-SVE: %[[step:.*]] = arith.muli %[[vscale]], %[[c4]] : index
// CHECK-VEC4-SVE: %[[r:.*]] = vector.insertelement %[[l]], %[[v0]][%[[c0]] : index] : vector<[4]xf32>
// CHECK-VEC4-SVE: %[[red:.*]] = scf.for %[[i:.*]] = %[[c0]] to %[[c1024]] step %[[step]] iter_args(%[[red_in:.*]] = %[[r]]) -> (vector<[4]xf32>) {
// CHECK-VEC4-SVE: %[[sub:.*]] = affine.min #[[$map]](%[[c1024]], %[[i]])[%[[step]]]
// CHECK-VEC4-SVE: %[[mask:.*]] = vector.create_mask %[[sub]] : vector<[4]xi1>
// CHECK-VEC4-SVE: %[[la:.*]] = vector.maskedload %{{.*}}[%[[i]]], %[[mask]], %[[v0]] : memref<?xf32>, vector<[4]xi1>, vector<[4]xf32> into vector<[4]xf32>
// CHECK-VEC4-SVE: %[[lb:.*]] = vector.maskedload %{{.*}}[%[[i]]], %[[mask]], %[[v0]] : memref<1024xf32>, vector<[4]xi1>, vector<[4]xf32> into vector<[4]xf32>
// CHECK-VEC4-SVE: %[[m:.*]] = arith.mulf %[[la]], %[[lb]] : vector<[4]xf32>
// CHECK-VEC4-SVE: %[[a:.*]] = arith.addf %[[red_in]], %[[m]] : vector<[4]xf32>
// CHECK-VEC4-SVE: %[[sa:.*]] = arith.select %[[mask]], %[[a]], %[[red_in]] : vector<[4]xi1>, vector<[4]xf32>
// CHECK-VEC4-SVE: scf.yield %[[sa]] : vector<[4]xf32>
// CHECK-VEC4-SVE: }
// CHECK-VEC4-SVE: %{{.*}} = vector.reduction <add>, %[[red]] : vector<[4]xf32> into f32
// CHECK-VEC4-SVE: return
//
func.func @reduction_d(%arga: tensor<1024xf32, #DenseVector>,
%argb: tensor<1024xf32>,
%argx: tensor<f32>) -> tensor<f32> {
%0 = linalg.generic #trait_reduction_d
ins(%arga, %argb: tensor<1024xf32, #DenseVector>, tensor<1024xf32>)
outs(%argx: tensor<f32>) {
^bb(%a: f32, %b: f32, %x: f32):
%0 = arith.mulf %a, %b : f32
%1 = arith.addf %x, %0 : f32
linalg.yield %1 : f32
} -> tensor<f32>
return %0 : tensor<f32>
}
// -----
#SparseMatrix = #sparse_tensor.encoding<{
lvlTypes = [ "dense", "compressed" ],
posWidth = 32,
crdWidth = 32
}>
#trait_mul_ds = {
indexing_maps = [
affine_map<(i,j) -> (i,j)>, // A
affine_map<(i,j) -> (i,j)>, // B
affine_map<(i,j) -> (i,j)> // X (out)
],
iterator_types = ["parallel", "parallel"],
doc = "X(i,j) = A(i,j) * B(i,j)"
}
//
// CHECK-SCALAR-LABEL: func @mul_ds
// CHECK-SCALAR-DAG: %[[c0:.*]] = arith.constant 0 : index
// CHECK-SCALAR-DAG: %[[c1:.*]] = arith.constant 1 : index
// CHECK-SCALAR-DAG: %[[c512:.*]] = arith.constant 512 : index
// CHECK-SCALAR: scf.for %[[i:.*]] = %[[c0]] to %[[c512]] step %[[c1]] {
// CHECK-SCALAR: %[[p:.*]] = memref.load %{{.*}}[%[[i]]] : memref<?xi32>
// CHECK-SCALAR: %[[a:.*]] = arith.extui %[[p]] : i32 to i64
// CHECK-SCALAR: %[[q:.*]] = arith.index_cast %[[a]] : i64 to index
// CHECK-SCALAR: %[[a:.*]] = arith.addi %[[i]], %[[c1]] : index
// CHECK-SCALAR: %[[r:.*]] = memref.load %{{.*}}[%[[a]]] : memref<?xi32>
// CHECK-SCALAR: %[[b:.*]] = arith.extui %[[r]] : i32 to i64
// CHECK-SCALAR: %[[s:.*]] = arith.index_cast %[[b]] : i64 to index
// CHECK-SCALAR: scf.for %[[j:.*]] = %[[q]] to %[[s]] step %[[c1]] {
// CHECK-SCALAR: %[[lj:.*]] = memref.load %{{.*}}[%[[j]]] : memref<?xi32>
// CHECK-SCALAR: %[[zj:.*]] = arith.extui %[[lj]] : i32 to i64
// CHECK-SCALAR: %[[cj:.*]] = arith.index_cast %[[zj]] : i64 to index
// CHECK-SCALAR: %[[la:.*]] = memref.load %{{.*}}[%[[j]]] : memref<?xf32>
// CHECK-SCALAR: %[[lb:.*]] = memref.load %{{.*}}[%[[i]], %[[cj]]] : memref<512x1024xf32>
// CHECK-SCALAR: %[[m:.*]] = arith.mulf %[[la]], %[[lb]] : f32
// CHECK-SCALAR: store %[[m]], %{{.*}}[%[[i]], %[[cj]]] : memref<512x1024xf32>
// CHECK-SCALAR: }
// CHECK-SCALAR: }
// CHECK-SCALAR: return
//
// CHECK-VEC16: #[[$map:.*]] = affine_map<(d0, d1)[s0] -> (16, d0 - d1)
// CHECK-VEC16-LABEL: func @mul_ds
// CHECK-VEC16-DAG: %[[c0:.*]] = arith.constant 0 : index
// CHECK-VEC16-DAG: %[[c1:.*]] = arith.constant 1 : index
// CHECK-VEC16-DAG: %[[c16:.*]] = arith.constant 16 : index
// CHECK-VEC16-DAG: %[[c512:.*]] = arith.constant 512 : index
// CHECK-VEC16: scf.for %[[i:.*]] = %[[c0]] to %[[c512]] step %[[c1]] {
// CHECK-VEC16: %[[p:.*]] = memref.load %{{.*}}[%[[i]]] : memref<?xi32>
// CHECK-VEC16: %[[a:.*]] = arith.extui %[[p]] : i32 to i64
// CHECK-VEC16: %[[q:.*]] = arith.index_cast %[[a]] : i64 to index
// CHECK-VEC16: %[[a:.*]] = arith.addi %[[i]], %[[c1]] : index
// CHECK-VEC16: %[[r:.*]] = memref.load %{{.*}}[%[[a]]] : memref<?xi32>
// CHECK-VEC16: %[[b:.*]] = arith.extui %[[r]] : i32 to i64
// CHECK-VEC16: %[[s:.*]] = arith.index_cast %[[b]] : i64 to index
// CHECK-VEC16: scf.for %[[j:.*]] = %[[q]] to %[[s]] step %[[c16]] {
// CHECK-VEC16: %[[sub:.*]] = affine.min #[[$map]](%[[s]], %[[j]])[%[[c16]]]
// CHECK-VEC16: %[[mask:.*]] = vector.create_mask %[[sub]] : vector<16xi1>
// CHECK-VEC16: %[[lj:.*]] = vector.maskedload %{{.*}}[%[[j]]], %[[mask]], %{{.*}} : memref<?xi32>, vector<16xi1>, vector<16xi32> into vector<16xi32>
// CHECK-VEC16: %[[zj:.*]] = arith.extui %[[lj]] : vector<16xi32> to vector<16xi64>
// CHECK-VEC16: %[[la:.*]] = vector.maskedload %{{.*}}[%[[j]]], %[[mask]], %{{.*}} : memref<?xf32>, vector<16xi1>, vector<16xf32> into vector<16xf32>
// CHECK-VEC16: %[[lb:.*]] = vector.gather %{{.*}}[%[[i]], %[[c0]]] [%[[zj]]], %[[mask]], %{{.*}} : memref<512x1024xf32>, vector<16xi64>, vector<16xi1>, vector<16xf32> into vector<16xf32>
// CHECK-VEC16: %[[m:.*]] = arith.mulf %[[la]], %[[lb]] : vector<16xf32>
// CHECK-VEC16: vector.scatter %{{.*}}[%[[i]], %[[c0]]] [%[[zj]]], %[[mask]], %[[m]] : memref<512x1024xf32>, vector<16xi64>, vector<16xi1>, vector<16xf32>
// CHECK-VEC16: }
// CHECK-VEC16: }
// CHECK-VEC16: return
//
// CHECK-VEC16-IDX32: #[[$map:.*]] = affine_map<(d0, d1)[s0] -> (16, d0 - d1)
// CHECK-VEC16-IDX32-LABEL: func @mul_ds
// CHECK-VEC16-IDX32-DAG: %[[c0:.*]] = arith.constant 0 : index
// CHECK-VEC16-IDX32-DAG: %[[c1:.*]] = arith.constant 1 : index
// CHECK-VEC16-IDX32-DAG: %[[c16:.*]] = arith.constant 16 : index
// CHECK-VEC16-IDX32-DAG: %[[c512:.*]] = arith.constant 512 : index
// CHECK-VEC16-IDX32: scf.for %[[i:.*]] = %[[c0]] to %[[c512]] step %[[c1]] {
// CHECK-VEC16-IDX32: %[[p:.*]] = memref.load %{{.*}}[%[[i]]] : memref<?xi32>
// CHECK-VEC16-IDX32: %[[a:.*]] = arith.extui %[[p]] : i32 to i64
// CHECK-VEC16-IDX32: %[[q:.*]] = arith.index_cast %[[a]] : i64 to index
// CHECK-VEC16-IDX32: %[[a:.*]] = arith.addi %[[i]], %[[c1]] : index
// CHECK-VEC16-IDX32: %[[r:.*]] = memref.load %{{.*}}[%[[a]]] : memref<?xi32>
// CHECK-VEC16-IDX32: %[[b:.*]] = arith.extui %[[r]] : i32 to i64
// CHECK-VEC16-IDX32: %[[s:.*]] = arith.index_cast %[[b]] : i64 to index
// CHECK-VEC16-IDX32: scf.for %[[j:.*]] = %[[q]] to %[[s]] step %[[c16]] {
// CHECK-VEC16-IDX32: %[[sub:.*]] = affine.min #[[$map]](%[[s]], %[[j]])[%[[c16]]]
// CHECK-VEC16-IDX32: %[[mask:.*]] = vector.create_mask %[[sub]] : vector<16xi1>
// CHECK-VEC16-IDX32: %[[lj:.*]] = vector.maskedload %{{.*}}[%[[j]]], %[[mask]], %{{.*}} : memref<?xi32>, vector<16xi1>, vector<16xi32> into vector<16xi32>
// CHECK-VEC16-IDX32: %[[la:.*]] = vector.maskedload %{{.*}}[%[[j]]], %[[mask]], %{{.*}} : memref<?xf32>, vector<16xi1>, vector<16xf32> into vector<16xf32>
// CHECK-VEC16-IDX32: %[[lb:.*]] = vector.gather %{{.*}}[%[[i]], %[[c0]]] [%[[lj]]], %[[mask]], %{{.*}} : memref<512x1024xf32>, vector<16xi32>, vector<16xi1>, vector<16xf32> into vector<16xf32>
// CHECK-VEC16-IDX32: %[[m:.*]] = arith.mulf %[[la]], %[[lb]] : vector<16xf32>
// CHECK-VEC16-IDX32: vector.scatter %{{.*}}[%[[i]], %[[c0]]] [%[[lj]]], %[[mask]], %[[m]] : memref<512x1024xf32>, vector<16xi32>, vector<16xi1>, vector<16xf32>
// CHECK-VEC16-IDX32: }
// CHECK-VEC16-IDX32: }
// CHECK-VEC16-IDX32: return
//
// CHECK-VEC4-SVE: #[[$map:.*]] = affine_map<(d0, d1)[s0] -> (s0, d0 - d1)
// CHECK-VEC4-SVE-LABEL: func @mul_ds
// CHECK-VEC4-SVE-DAG: %[[c0:.*]] = arith.constant 0 : index
// CHECK-VEC4-SVE-DAG: %[[c1:.*]] = arith.constant 1 : index
// CHECK-VEC4-SVE-DAG: %[[c4:.*]] = arith.constant 4 : index
// CHECK-VEC4-SVE-DAG: %[[c512:.*]] = arith.constant 512 : index
// CHECK-VEC4-SVE-DAG: %[[v0i:.*]] = arith.constant dense<0> : vector<[4]xi32>
// CHECK-VEC4-SVE-DAG: %[[v0f:.*]] = arith.constant dense<0.000000e+00> : vector<[4]xf32>
// CHECK-VEC4-SVE: scf.for %[[i:.*]] = %[[c0]] to %[[c512]] step %[[c1]] {
// CHECK-VEC4-SVE: %[[p:.*]] = memref.load %{{.*}}[%[[i]]] : memref<?xi32>
// CHECK-VEC4-SVE: %[[a:.*]] = arith.extui %[[p]] : i32 to i64
// CHECK-VEC4-SVE: %[[q:.*]] = arith.index_cast %[[a]] : i64 to index
// CHECK-VEC4-SVE: %[[a:.*]] = arith.addi %[[i]], %[[c1]] : index
// CHECK-VEC4-SVE: %[[r:.*]] = memref.load %{{.*}}[%[[a]]] : memref<?xi32>
// CHECK-VEC4-SVE: %[[b:.*]] = arith.extui %[[r]] : i32 to i64
// CHECK-VEC4-SVE: %[[s:.*]] = arith.index_cast %[[b]] : i64 to index
// CHECK-VEC4-SVE: %[[vscale:.*]] = vector.vscale
// CHECK-VEC4-SVE: %[[step:.*]] = arith.muli %[[vscale]], %[[c4]] : index
// CHECK-VEC4-SVE: scf.for %[[j:.*]] = %[[q]] to %[[s]] step %[[step]] {
// CHECK-VEC4-SVE: %[[sub:.*]] = affine.min #[[$map]](%[[s]], %[[j]])[%[[step]]]
// CHECK-VEC4-SVE: %[[mask:.*]] = vector.create_mask %[[sub]] : vector<[4]xi1>
// CHECK-VEC4-SVE: %[[lji32:.*]] = vector.maskedload %{{.*}}[%[[j]]], %[[mask]], %[[v0i]] : memref<?xi32>, vector<[4]xi1>, vector<[4]xi32> into vector<[4]xi32>
// CHECK-VEC4-SVE: %[[lj:.*]] = arith.extui %[[lji32]] : vector<[4]xi32> to vector<[4]xi64>
// CHECK-VEC4-SVE: %[[la:.*]] = vector.maskedload %{{.*}}[%[[j]]], %[[mask]], %[[v0f]] : memref<?xf32>, vector<[4]xi1>, vector<[4]xf32> into vector<[4]xf32>
// CHECK-VEC4-SVE: %[[lb:.*]] = vector.gather %{{.*}}[%[[i]], %[[c0]]] [%[[lj]]], %[[mask]], %[[v0f]] : memref<512x1024xf32>, vector<[4]xi64>, vector<[4]xi1>, vector<[4]xf32> into vector<[4]xf32>
// CHECK-VEC4-SVE: %[[m:.*]] = arith.mulf %[[la]], %[[lb]] : vector<[4]xf32>
// CHECK-VEC4-SVE: vector.scatter %{{.*}}[%[[i]], %[[c0]]] [%[[lj]]], %[[mask]], %[[m]] : memref<512x1024xf32>, vector<[4]xi64>, vector<[4]xi1>, vector<[4]xf32>
// CHECK-VEC4-SVE: }
// CHECK-VEC4-SVE: }
// CHECK-VEC4-SVE: return
//
func.func @mul_ds(%arga: tensor<512x1024xf32, #SparseMatrix>,
%argb: tensor<512x1024xf32>,
%argx: tensor<512x1024xf32>) -> tensor<512x1024xf32> {
%0 = linalg.generic #trait_mul_ds
ins(%arga, %argb: tensor<512x1024xf32, #SparseMatrix>, tensor<512x1024xf32>)
outs(%argx: tensor<512x1024xf32>) {
^bb(%a: f32, %b: f32, %x: f32):
%0 = arith.mulf %a, %b : f32
linalg.yield %0 : f32
} -> tensor<512x1024xf32>
return %0 : tensor<512x1024xf32>
}
// -----
#SparseMatrix = #sparse_tensor.encoding<{lvlTypes = ["dense","compressed"]}>
#trait_affine = {
indexing_maps = [
affine_map<(i,j) -> (i,j)>,
affine_map<(i,j) -> (i+1,j)>
],
iterator_types = ["parallel","parallel"],
doc = "X(i+1,j) += A(i,j)"
}
//
// CHECK-SCALAR-LABEL: func @add_dense
// CHECK-SCALAR-DAG: %[[c0:.*]] = arith.constant 0 : index
// CHECK-SCALAR-DAG: %[[c1:.*]] = arith.constant 1 : index
// CHECK-SCALAR-DAG: %[[c32:.*]] = arith.constant 32 : index
// CHECK-SCALAR: scf.for %[[i:.*]] = %[[c0]] to %[[c32]] step %[[c1]] {
// CHECK-SCALAR: %[[lo:.*]] = memref.load %{{.*}}[%[[i]]] : memref<?xindex>
// CHECK-SCALAR: %[[i1:.*]] = arith.addi %[[i]], %[[c1]] : index
// CHECK-SCALAR: %[[hi:.*]] = memref.load %{{.*}}[%[[i1]]] : memref<?xindex>
// CHECK-SCALAR: scf.for %[[jj:.*]] = %[[lo]] to %[[hi]] step %[[c1]] {
// CHECK-SCALAR: %[[j:.*]] = memref.load %{{.*}}[%[[jj]]] : memref<?xindex>
// CHECK-SCALAR: %[[x:.*]] = memref.load %{{.*}}[%[[i1]], %[[j]]] : memref<33x64xf64>
// CHECK-SCALAR: %[[a:.*]] = memref.load %{{.*}}[%[[jj]]] : memref<?xf64>
// CHECK-SCALAR: %[[s:.*]] = arith.addf %[[x]], %[[a]] : f64
// CHECK-SCALAR: memref.store %[[s]], %{{.*}}[%[[i1]], %[[j]]] : memref<33x64xf64>
// CHECK-SCALAR: }
// CHECK-SCALAR: }
// CHECK-SCALAR: return
//
// CHECK-VEC16: #[[$map:.*]] = affine_map<(d0, d1)[s0] -> (16, d0 - d1)
// CHECK-VEC16-LABEL: func @add_dense
// CHECK-VEC16-DAG: %[[c0:.*]] = arith.constant 0 : index
// CHECK-VEC16-DAG: %[[c1:.*]] = arith.constant 1 : index
// CHECK-VEC16-DAG: %[[c16:.*]] = arith.constant 16 : index
// CHECK-VEC16-DAG: %[[c32:.*]] = arith.constant 32 : index
// CHECK-VEC16: scf.for %[[i:.*]] = %[[c0]] to %[[c32]] step %[[c1]] {
// CHECK-VEC16: %[[lo:.*]] = memref.load %{{.*}}[%[[i]]] : memref<?xindex>
// CHECK-VEC16: %[[i1:.*]] = arith.addi %[[i]], %[[c1]] : index
// CHECK-VEC16: %[[hi:.*]] = memref.load %{{.*}}[%[[i1]]] : memref<?xindex>
// CHECK-VEC16: scf.for %[[jj:.*]] = %[[lo]] to %[[hi]] step %[[c16]] {
// CHECK-VEC16: %[[sub:.*]] = affine.min #[[$map]](%[[hi]], %[[jj]])[%[[c16]]]
// CHECK-VEC16: %[[mask:.*]] = vector.create_mask %[[sub]] : vector<16xi1>
// CHECK-VEC16: %[[j:.*]] = vector.maskedload %{{.*}}[%[[jj]]], %[[mask]], %{{.*}} : memref<?xindex>
// CHECK-VEC16: %[[x:.*]] = vector.gather %{{.*}}[%[[i1]], %[[c0]]] [%[[j]]], %[[mask]], %{{.*}} : memref<33x64xf64>
// CHECK-VEC16: %[[a:.*]] = vector.maskedload %{{.*}}[%[[jj]]], %[[mask]], %{{.*}} : memref<?xf64>
// CHECK-VEC16: %[[s:.*]] = arith.addf %[[x]], %[[a]] : vector<16xf64>
// CHECK-VEC16: vector.scatter %{{.*}}[%[[i1]], %[[c0]]] [%[[j]]], %[[mask]], %[[s]] : memref<33x64xf64>
// CHECK-VEC16: }
// CHECK-VEC16: }
// CHECK-VEC16: return
//
// CHECK-VEC16-IDX32: #[[$map:.*]] = affine_map<(d0, d1)[s0] -> (16, d0 - d1)
// CHECK-VEC16-IDX32-LABEL: func @add_dense
// CHECK-VEC16-IDX32-DAG: %[[c0:.*]] = arith.constant 0 : index
// CHECK-VEC16-IDX32-DAG: %[[c1:.*]] = arith.constant 1 : index
// CHECK-VEC16-IDX32-DAG: %[[c16:.*]] = arith.constant 16 : index
// CHECK-VEC16-IDX32-DAG: %[[c32:.*]] = arith.constant 32 : index
// CHECK-VEC16-IDX32: scf.for %[[i:.*]] = %[[c0]] to %[[c32]] step %[[c1]] {
// CHECK-VEC16-IDX32: %[[lo:.*]] = memref.load %{{.*}}[%[[i]]] : memref<?xindex>
// CHECK-VEC16-IDX32: %[[i1:.*]] = arith.addi %[[i]], %[[c1]] : index
// CHECK-VEC16-IDX32: %[[hi:.*]] = memref.load %{{.*}}[%[[i1]]] : memref<?xindex>
// CHECK-VEC16-IDX32: scf.for %[[jj:.*]] = %[[lo]] to %[[hi]] step %[[c16]] {
// CHECK-VEC16-IDX32: %[[sub:.*]] = affine.min #[[$map]](%[[hi]], %[[jj]])[%[[c16]]]
// CHECK-VEC16-IDX32: %[[mask:.*]] = vector.create_mask %[[sub]] : vector<16xi1>
// CHECK-VEC16-IDX32: %[[j:.*]] = vector.maskedload %{{.*}}[%[[jj]]], %[[mask]], %{{.*}} : memref<?xindex>
// CHECK-VEC16-IDX32: %[[x:.*]] = vector.gather %{{.*}}[%[[i1]], %[[c0]]] [%[[j]]], %[[mask]], %{{.*}} : memref<33x64xf64>
// CHECK-VEC16-IDX32: %[[a:.*]] = vector.maskedload %{{.*}}[%[[jj]]], %[[mask]], %{{.*}} : memref<?xf64>
// CHECK-VEC16-IDX32: %[[s:.*]] = arith.addf %[[x]], %[[a]] : vector<16xf64>
// CHECK-VEC16-IDX32: vector.scatter %{{.*}}[%[[i1]], %[[c0]]] [%[[j]]], %[[mask]], %[[s]] : memref<33x64xf64>
// CHECK-VEC16-IDX32: }
// CHECK-VEC16-IDX32: }
// CHECK-VEC16-IDX32: return
//
// CHECK-VEC4-SVE: #[[$map:.*]] = affine_map<(d0, d1)[s0] -> (s0, d0 - d1)
// CHECK-VEC4-SVE-LABEL: func @add_dense
// CHECK-VEC4-SVE-DAG: %[[c0:.*]] = arith.constant 0 : index
// CHECK-VEC4-SVE-DAG: %[[c1:.*]] = arith.constant 1 : index
// CHECK-VEC4-SVE-DAG: %[[c4:.*]] = arith.constant 4 : index
// CHECK-VEC4-SVE-DAG: %[[c32:.*]] = arith.constant 32 : index
// CHECK-VEC4-SVE-DAG: %[[v0idx:.*]] = arith.constant dense<0> : vector<[4]xindex>
// CHECK-VEC4-SVE-DAG: %[[v0f64:.*]] = arith.constant dense<0.000000e+00> : vector<[4]xf64>
// CHECK-VEC4-SVE: scf.for %[[i:.*]] = %[[c0]] to %[[c32]] step %[[c1]] {
// CHECK-VEC4-SVE: %[[lo:.*]] = memref.load %{{.*}}[%[[i]]] : memref<?xindex>
// CHECK-VEC4-SVE: %[[i1:.*]] = arith.addi %[[i]], %[[c1]] : index
// CHECK-VEC4-SVE: %[[hi:.*]] = memref.load %{{.*}}[%[[i1]]] : memref<?xindex>
// CHECK-VEC4-SVE: %[[vscale:.*]] = vector.vscale
// CHECK-VEC4-SVE: %[[step:.*]] = arith.muli %[[vscale]], %[[c4]] : index
// CHECK-VEC4-SVE: scf.for %[[jj:.*]] = %[[lo]] to %[[hi]] step %[[step]] {
// CHECK-VEC4-SVE: %[[sub:.*]] = affine.min #[[$map]](%[[hi]], %[[jj]])[%[[step]]]
// CHECK-VEC4-SVE: %[[mask:.*]] = vector.create_mask %[[sub]] : vector<[4]xi1>
// CHECK-VEC4-SVE: %[[j:.*]] = vector.maskedload %{{.*}}[%[[jj]]], %[[mask]], %[[v0idx]] : memref<?xindex>
// CHECK-VEC4-SVE: %[[x:.*]] = vector.gather %{{.*}}[%[[i1]], %[[c0]]] [%[[j]]], %[[mask]], %[[v0f64]] : memref<33x64xf64>
// CHECK-VEC4-SVE: %[[a:.*]] = vector.maskedload %{{.*}}[%[[jj]]], %[[mask]], %[[v0f64]] : memref<?xf64>
// CHECK-VEC4-SVE: %[[s:.*]] = arith.addf %[[x]], %[[a]] : vector<[4]xf64>
// CHECK-VEC4-SVE: vector.scatter %{{.*}}[%[[i1]], %[[c0]]] [%[[j]]], %[[mask]], %[[s]] : memref<33x64xf64>
// CHECK-VEC4-SVE: }
// CHECK-VEC4-SVE: }
// CHECK-VEC4-SVE: return
//
func.func @add_dense(%arga: tensor<32x64xf64, #SparseMatrix>,
%argx: tensor<33x64xf64>) -> tensor<33x64xf64> {
%0 = linalg.generic #trait_affine
ins(%arga: tensor<32x64xf64, #SparseMatrix>)
outs(%argx: tensor<33x64xf64>) {
^bb(%a: f64, %x: f64):
%0 = arith.addf %x, %a : f64
linalg.yield %0 : f64
} -> tensor<33x64xf64>
return %0 : tensor<33x64xf64>
}
|