File: sparse_vector_mv.mlir

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (31 lines) | stat: -rw-r--r-- 914 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
// RUN: mlir-opt %s -sparse-compiler="vl=8" |  FileCheck %s

#Dense = #sparse_tensor.encoding<{
  lvlTypes = [ "dense", "dense" ]
}>

#matvec = {
  indexing_maps = [
    affine_map<(i,j) -> (i,j)>, // A
    affine_map<(i,j) -> (j)>,   // b
    affine_map<(i,j) -> (i)>    // x (out)
  ],
  iterator_types = ["parallel", "reduction"],
  doc = "X(i) += A(i,j) * B(j)"
}

// CHECK-LABEL: llvm.func @kernel_matvec
// CHECK:       llvm.intr.vector.reduce.fadd
func.func @kernel_matvec(%arga: tensor<?x?xf32, #Dense>,
                         %argb: tensor<?xf32>,
			 %argx: tensor<?xf32>) -> tensor<?xf32> {
  %x = linalg.generic #matvec
    ins(%arga, %argb: tensor<?x?xf32, #Dense>, tensor<?xf32>)
    outs(%argx: tensor<?xf32>) {
    ^bb(%a: f32, %b: f32, %x: f32):
      %0 = arith.mulf %a, %b : f32
      %1 = arith.addf %x, %0 : f32
      linalg.yield %1 : f32
  } -> tensor<?xf32>
  return %x : tensor<?xf32>
}