File: fold-tensor-subset-ops-into-vector-transfers.mlir

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (110 lines) | stat: -rw-r--r-- 6,939 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
// RUN: mlir-opt -split-input-file -test-transform-dialect-interpreter %s | FileCheck %s

transform.sequence failures(propagate) {
^bb1(%func_op: !transform.op<"func.func">):
  transform.apply_patterns to %func_op {
    transform.apply_patterns.tensor.fold_tensor_subset_ops_into_vector_transfers
  } : !transform.op<"func.func">
}

// CHECK: #[[$map:.*]] = affine_map<()[s0] -> (s0 + 4)>
// CHECK: #[[$map1:.*]] = affine_map<()[s0] -> (s0 + 3)>
// CHECK: #[[$map2:.*]] = affine_map<(d0, d1, d2) -> (d0, d2)>

// CHECK-LABEL: func @transfer_read_of_extract_slice(
//  CHECK-SAME:     %[[t:.*]]: tensor<?x?xf32>, %[[s1:.*]]: index, %[[s2:.*]]: index
//   CHECK-DAG:   %[[c8:.*]] = arith.constant 8 : index
//       CHECK:   %[[add:.*]] = affine.apply #[[$map]]()[%[[s1]]]
//       CHECK:   %[[r:.*]] = vector.transfer_read %[[t]][%[[c8]], %[[add]]], %{{.*}} {in_bounds = [true, true]} : tensor<?x?xf32>, vector<5x6xf32>
//       CHECK:   return %[[r]]
func.func @transfer_read_of_extract_slice(%t : tensor<?x?xf32>, %s1 : index, %s2 : index) -> vector<5x6xf32> {
  %c3 = arith.constant 3 : index
  %c4 = arith.constant 4 : index
  %cst = arith.constant 0.0 : f32
  %0 = tensor.extract_slice %t[5, %s1] [10, %s2] [1, 1] : tensor<?x?xf32> to tensor<10x?xf32>
  %1 = vector.transfer_read %0[%c3, %c4], %cst {in_bounds = [true, true]} : tensor<10x?xf32>, vector<5x6xf32>
  return %1 : vector<5x6xf32>
}

// CHECK-LABEL: func @transfer_read_of_extract_slice_1d(
//  CHECK-SAME:     %[[t:.*]]: tensor<?x?xf32>, %[[s1:.*]]: index, %[[s2:.*]]: index
//   CHECK-DAG:   %[[c8:.*]] = arith.constant 8 : index
//       CHECK:   %[[add:.*]] = affine.apply #[[$map]]()[%[[s1]]]
//       CHECK:   %[[r:.*]] = vector.transfer_read %[[t]][%[[c8]], %[[add]]], %{{.*}} {in_bounds = [true]} : tensor<?x?xf32>, vector<6xf32>
//       CHECK:   return %[[r]]
func.func @transfer_read_of_extract_slice_1d(%t : tensor<?x?xf32>, %s1 : index, %s2 : index) -> vector<6xf32> {
  %c3 = arith.constant 3 : index
  %c4 = arith.constant 4 : index
  %cst = arith.constant 0.0 : f32
  %0 = tensor.extract_slice %t[5, %s1] [10, %s2] [1, 1] : tensor<?x?xf32> to tensor<10x?xf32>
  %1 = vector.transfer_read %0[%c3, %c4], %cst {in_bounds = [true]} : tensor<10x?xf32>, vector<6xf32>
  return %1 : vector<6xf32>
}

// CHECK-LABEL: func @transfer_read_of_extract_slice_rank_reducing(
//  CHECK-SAME:     %[[t:.*]]: tensor<?x?x?xf32>, %[[s1:.*]]: index, %[[s2:.*]]: index
//   CHECK-DAG:   %[[c5:.*]] = arith.constant 5 : index
//   CHECK-DAG:   %[[c10:.*]] = arith.constant 10 : index
//       CHECK:   %[[add:.*]] = affine.apply #[[$map1]]()[%[[s1]]]
//       CHECK:   %[[r:.*]] = vector.transfer_read %[[t]][%[[c5]], %[[add]], %[[c10]]], %{{.*}} {in_bounds = [true, true]} : tensor<?x?x?xf32>, vector<5x6xf32>
//       CHECK:   return %[[r]]
func.func @transfer_read_of_extract_slice_rank_reducing(%t : tensor<?x?x?xf32>, %s1 : index, %s2 : index) -> vector<5x6xf32> {
  %c3 = arith.constant 3 : index
  %c4 = arith.constant 4 : index
  %cst = arith.constant 0.0 : f32
  %0 = tensor.extract_slice %t[5, %s1, 6] [1, %s2, 12] [1, 1, 1] : tensor<?x?x?xf32> to tensor<?x12xf32>
  %1 = vector.transfer_read %0[%c3, %c4], %cst {in_bounds = [true, true]} : tensor<?x12xf32>, vector<5x6xf32>
  return %1 : vector<5x6xf32>
}

// CHECK-LABEL: func @transfer_read_of_extract_slice_non_leading_rank_reduction(
//  CHECK-SAME:     %[[t:.*]]: tensor<?x?x?xf32>, %[[s1:.*]]: index, %[[s2:.*]]: index
//   CHECK-DAG:   %[[c8:.*]] = arith.constant 8 : index
//   CHECK-DAG:   %[[c10:.*]] = arith.constant 10 : index
//       CHECK:   %[[r:.*]] = vector.transfer_read %[[t]][%[[c8]], %[[s1]], %[[c10]]], %{{.*}} {in_bounds = [true, true], permutation_map = #[[$map2]]} : tensor<?x?x?xf32>, vector<5x6xf32>
//       CHECK:   return %[[r]]
func.func @transfer_read_of_extract_slice_non_leading_rank_reduction(%t : tensor<?x?x?xf32>, %s1 : index, %s2 : index) -> vector<5x6xf32> {
  %c3 = arith.constant 3 : index
  %c4 = arith.constant 4 : index
  %cst = arith.constant 0.0 : f32
  %0 = tensor.extract_slice %t[5, %s1, 6] [%s2, 1, 12] [1, 1, 1] : tensor<?x?x?xf32> to tensor<?x12xf32>
  %1 = vector.transfer_read %0[%c3, %c4], %cst {in_bounds = [true, true]} : tensor<?x12xf32>, vector<5x6xf32>
  return %1 : vector<5x6xf32>
}

// CHECK-LABEL: func @insert_slice_of_transfer_write(
//  CHECK-SAME:     %[[t1:.*]]: tensor<?x12xf32>, %[[v:.*]]: vector<5x6xf32>, %[[s:.*]]: index
//       CHECK:   %[[c3:.*]] = arith.constant 3 : index
//       CHECK:   %[[r:.*]] = vector.transfer_write %[[v]], %[[t1]][%[[c3]], %[[s]]] {in_bounds = [true, true]} : vector<5x6xf32>, tensor<?x12xf32>
//       CHECK:   return %[[r]]
func.func @insert_slice_of_transfer_write(%t1 : tensor<?x12xf32>, %v : vector<5x6xf32>, %s : index, %t2 : tensor<5x6xf32>) -> tensor<?x12xf32> {
  %c0 = arith.constant 0 : index
  %0 = vector.transfer_write %v, %t2[%c0, %c0] {in_bounds = [true, true]} : vector<5x6xf32>, tensor<5x6xf32>
  %1 = tensor.insert_slice %0 into %t1[3, %s] [5, 6] [1, 1] : tensor<5x6xf32> into tensor<?x12xf32>
  return %1 : tensor<?x12xf32>
}

// CHECK-LABEL: func @insert_slice_of_transfer_write_non_leading_rank_reduction(
//  CHECK-SAME:     %[[t1:.*]]: tensor<?x?x12xf32>, %[[v:.*]]: vector<5x6xf32>, %[[s:.*]]: index
//   CHECK-DAG:   %[[c3:.*]] = arith.constant 3 : index
//   CHECK-DAG:   %[[c4:.*]] = arith.constant 4 : index
//       CHECK:   %[[r:.*]] = vector.transfer_write %[[v]], %[[t1]][%[[c4]], %[[c3]], %[[s]]] {in_bounds = [true, true], permutation_map = #[[$map2]]} : vector<5x6xf32>, tensor<?x?x12xf32>
func.func @insert_slice_of_transfer_write_non_leading_rank_reduction(%t1 : tensor<?x?x12xf32>, %v : vector<5x6xf32>, %s : index, %t2 : tensor<5x6xf32>) -> tensor<?x?x12xf32> {
  %c0 = arith.constant 0 : index
  %0 = vector.transfer_write %v, %t2[%c0, %c0] {in_bounds = [true, true]} : vector<5x6xf32>, tensor<5x6xf32>
  %1 = tensor.insert_slice %0 into %t1[4, 3, %s] [5, 1, 6] [1, 1, 1] : tensor<5x6xf32> into tensor<?x?x12xf32>
  return %1 : tensor<?x?x12xf32>
}

// CHECK-LABEL: func @insert_slice_of_transfer_write_rank_extending(
//  CHECK-SAME:     %[[t1:.*]]: tensor<?x?x12xf32>, %[[v:.*]]: vector<5x6xf32>, %[[s:.*]]: index
//   CHECK-DAG:   %[[c3:.*]] = arith.constant 3 : index
//   CHECK-DAG:   %[[c4:.*]] = arith.constant 4 : index
//       CHECK:   %[[r:.*]] = vector.transfer_write %[[v]], %[[t1]][%[[c4]], %[[c3]], %[[s]]] {in_bounds = [true, true]} : vector<5x6xf32>, tensor<?x?x12xf32>
//       CHECK:   return %[[r]]
func.func @insert_slice_of_transfer_write_rank_extending(%t1 : tensor<?x?x12xf32>, %v : vector<5x6xf32>, %s : index, %t2 : tensor<5x6xf32>) -> tensor<?x?x12xf32> {
  %c0 = arith.constant 0 : index
  %0 = vector.transfer_write %v, %t2[%c0, %c0] {in_bounds = [true, true]} : vector<5x6xf32>, tensor<5x6xf32>
  %1 = tensor.insert_slice %0 into %t1[4, 3, %s] [1, 5, 6] [1, 1, 1] : tensor<5x6xf32> into tensor<?x?x12xf32>
  return %1 : tensor<?x?x12xf32>
}