File: invalid.mlir

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (205 lines) | stat: -rw-r--r-- 10,638 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
// RUN: mlir-opt %s -split-input-file -verify-diagnostics --tosa-validate=strict-op-spec-alignment


func.func @test_conv2d(%arg0: tensor<1x29x29x4xf32>, %arg1: tensor<16x3x3x4xi8>, %arg2: tensor<16xi8>) -> tensor<1x27x27x16xi8> {
  // expected-error@+1 {{expect both input and weight to be float or not together, got 'f32' and 'i8'}}
  %0 = "tosa.conv2d"(%arg0, %arg1, %arg2) {dilation = array<i64: 1, 1>, pad = array<i64: 0, 0, 0, 0>, stride = array<i64: 1, 1>}
           : (tensor<1x29x29x4xf32>, tensor<16x3x3x4xi8>, tensor<16xi8>) -> tensor<1x27x27x16xi8>
  return %0 : tensor<1x27x27x16xi8>
}

// -----

func.func @test_conv2d(%arg0: tensor<*xi8>, %arg1: tensor<16x3x3x4xi8>, %arg2: tensor<16xi8>) -> tensor<1x27x27x16xi8> {
  // expected-error@+1 {{expect a ranked tensor for input, got <block argument> of type 'tensor<*xi8>' at index: 0}}
  %0 = "tosa.conv2d"(%arg0, %arg1, %arg2) {dilation = array<i64: 1, 1>, pad = array<i64: 0, 0, 0, 0>, stride = array<i64: 1, 1>}
           : (tensor<*xi8>, tensor<16x3x3x4xi8>, tensor<16xi8>) -> tensor<1x27x27x16xi8>
  return %0 : tensor<1x27x27x16xi8>
}

// -----

func.func @test_conv2d(%arg0: tensor<1x29x29x4xi8>, %arg1: tensor<*xi8>, %arg2: tensor<16xi8>) -> tensor<1x27x27x16xi8> {
  // expected-error@+1 {{'tosa.conv2d' op operand #1 must be 4D tensor of 4-bit signless integer or 8-bit signless integer or Quint8 type or Qint4 type or Qint8 type or Qint16 type or Qint32 type or 32-bit float or 16-bit float or bfloat16 type values, but got 'tensor<*xi8>'}}
  %0 = "tosa.conv2d"(%arg0, %arg1, %arg2) {dilation = array<i64: 1, 1>, pad = array<i64: 0, 0, 0, 0>, stride = array<i64: 1, 1>}
           : (tensor<1x29x29x4xi8>, tensor<*xi8>, tensor<16xi8>) -> tensor<1x27x27x16xi8>
  return %0 : tensor<1x27x27x16xi8>
}

// -----

func.func @test_conv2d(%arg0: tensor<1x29x29x4xi8>, %arg1: tensor<16x3x3x4xi8>, %arg2: tensor<16xi8>) -> tensor<1x27x27x16xi8> {
  // expected-error@+1 {{'tosa.conv2d' op quantizationattr is required for quantized type, and not allowed for float type}}
  %0 = "tosa.conv2d"(%arg0, %arg1, %arg2) {dilation = array<i64: 1, 1>, pad = array<i64: 0, 0, 0, 0>, stride = array<i64: 1, 1>}
           : (tensor<1x29x29x4xi8>, tensor<16x3x3x4xi8>, tensor<16xi8>) -> tensor<1x27x27x16xi8>
  return %0 : tensor<1x27x27x16xi8>
}

// -----

func.func @test_concat(%arg0 : tensor<2x1xf32>, %arg1 : tensor<2x2xf32>) -> tensor<?x?xf32> {
  // expected-error@+2 {{failed to infer returned types}}
  // expected-error@+1 {{Cannot concat tensors with different sizes on the non-axis dimension 1}}
  %0 = "tosa.concat"(%arg0, %arg1) {axis = 0 : i64} : (tensor<2x1xf32>, tensor<2x2xf32>) -> tensor<?x?xf32>
  return %0 : tensor<?x?xf32>
}

// -----

func.func @test_concat_element_type_mismatch(%arg0 : tensor<1x2xf32>, %arg1 : tensor<2x2xf32>) -> tensor<?x?xi8> {
  // expected-error@+2 {{failed to infer returned types}}
  // expected-error@+1 {{'tosa.concat' op inferred type(s) 'tensor<3x2xf32>' are incompatible with return type(s) of operation 'tensor<?x?xi8>}}
  %0 = "tosa.concat"(%arg0, %arg1) {axis = 0 : i64} : (tensor<1x2xf32>, tensor<2x2xf32>) -> tensor<?x?xi8>
  return %0 : tensor<?x?xi8>
}

// -----

func.func @test_pad_non_const(%arg0: tensor<13x21x3xf32>, %arg1: tensor<3x2xi32>) -> tensor<13x21x3xf32> {
  // expected-error@+1 {{'tosa.pad' op padding of pad is not constant}}
  %0 = "tosa.pad"(%arg0, %arg1) : (tensor<13x21x3xf32>, tensor<3x2xi32>) -> tensor<13x21x3xf32>
  return %0 : tensor<13x21x3xf32>
}

// -----

func.func @test_pad_non_const(%arg0: tensor<13x21x3xi8>, %arg1: tensor<i8>) -> tensor<13x21x3xi8> {
  %0 = "tosa.const"() {value = dense<[[0, 0], [0, 1], [0, 1]]> : tensor<3x2xi32>} : () -> tensor<3x2xi32>
  // expected-error@+1 {{'tosa.pad' op pad_const of pad is not constant}}
  %1 = "tosa.pad"(%arg0, %0, %arg1) : (tensor<13x21x3xi8>, tensor<3x2xi32>, tensor<i8>) -> tensor<13x21x3xi8>
  return %1 : tensor<13x21x3xi8>
}

// -----

func.func @test_transpose_non_const(%arg0: tensor<13x21x3xf32>, %arg1: tensor<3xi32>) -> tensor<3x13x21xf32> {
  // expected-error@+1 {{'tosa.transpose' op perms of transpose is not constant}}
  %0 = "tosa.transpose"(%arg0, %arg1) : (tensor<13x21x3xf32>, tensor<3xi32>) -> tensor<3x13x21xf32>
  return %0 : tensor<3x13x21xf32>
}

// -----

func.func @test_fully_connected_non_const(%arg0: tensor<13x21x3xf32>, %arg1: tensor<2x3xf32>) -> tensor<273x2xf32> {
  %0 = "tosa.const"() {value = dense<0.000000e+00> : tensor<2xf32>} : () -> tensor<2xf32>
  %1 = "tosa.reshape"(%arg0) {new_shape = array<i64: 273, 3>} : (tensor<13x21x3xf32>) -> tensor<273x3xf32>
  // expected-error@+1 {{'tosa.fully_connected' op weight of fully_connected is not constant}}
  %2 = "tosa.fully_connected"(%1, %arg1, %0) : (tensor<273x3xf32>, tensor<2x3xf32>, tensor<2xf32>) -> tensor<273x2xf32>
  return %2 : tensor<273x2xf32>
}

// -----

func.func @test_fully_connected_non_const(%arg0: tensor<13x21x3xf32>, %arg1: tensor<2xf32>) -> tensor<273x2xf32> {
  %0 = "tosa.const"() {value = dense<[[-0.613216758, -0.63714242, -0.73500061], [0.180762768, 0.773053169, -0.933686495]]> : tensor<2x3xf32>} : () -> tensor<2x3xf32>
  %1 = "tosa.reshape"(%arg0) {new_shape = array<i64: 273, 3>} : (tensor<13x21x3xf32>) -> tensor<273x3xf32>
  // expected-error@+1 {{'tosa.fully_connected' op bias of fully_connected is not constant}}
  %2 = "tosa.fully_connected"(%1, %0, %arg1) : (tensor<273x3xf32>, tensor<2x3xf32>, tensor<2xf32>) -> tensor<273x2xf32>
  return %2 : tensor<273x2xf32>
}

// -----

func.func @test_reduce_sum_type_mismatch(%arg0 : tensor<2x3x4x5xf32>) -> () {
  // expected-error@+2 {{failed to infer returned types}}
  // expected-error@+1 {{'tosa.reduce_sum' op inferred type(s) 'tensor<1x3x4x5xf32>' are incompatible with return type(s) of operation 'tensor<1x3x4x5xi32>'}}
  %0 = "tosa.reduce_sum"(%arg0) {axis = 0 : i64} : (tensor<2x3x4x5xf32>) -> tensor<1x3x4x5xi32>
  return
}

// -----

func.func @test_reduce_max_type_mismatch(%arg0 : tensor<2x3x4x5xf32>) -> () {
  // expected-error@+2 {{failed to infer returned types}}
  // expected-error@+1 {{'tosa.reduce_max' op inferred type(s) 'tensor<2x3x4x1xf32>' are incompatible with return type(s) of operation 'tensor<2x3x4x1xi32>'}}
  %0 = "tosa.reduce_max"(%arg0) {axis = 3 : i64} : (tensor<2x3x4x5xf32>) -> tensor<2x3x4x1xi32>
  return
}

// -----

func.func @test_reduce_min_type_mismatch(%arg0 : tensor<2x3x4x5xf32>) -> () {
  // expected-error@+2 {{failed to infer returned types}}
  // expected-error@+1 {{'tosa.reduce_min' op inferred type(s) 'tensor<2x1x4x5xf32>' are incompatible with return type(s) of operation 'tensor<2x1x4x5xi32>'}}
  %0 = "tosa.reduce_min"(%arg0) {axis = 1 : i64} : (tensor<2x3x4x5xf32>) -> tensor<2x1x4x5xi32>
  return
}

// -----

func.func @test_reduce_prod_type_mismatch(%arg0 : tensor<2x3x4x5xf32>) -> () {
  // expected-error@+2 {{failed to infer returned types}}
  // expected-error@+1 {{'tosa.reduce_prod' op inferred type(s) 'tensor<2x1x4x5xf32>' are incompatible with return type(s) of operation 'tensor<2x3x4x5xf32>'}}
  %0 = "tosa.reduce_prod"(%arg0) {axis = 1 : i64} : (tensor<2x3x4x5xf32>) -> tensor<2x3x4x5xf32>
  return
}

// -----

func.func @test_reshape_type_mismatch(%arg0 : tensor<13x21x3xf32>) -> () {
  // expected-error@+2 {{failed to infer returned types}}
  // expected-error@+1 {{'tosa.reshape' op inferred type(s) 'tensor<13x21x3x1xf32>' are incompatible with return type(s) of operation 'tensor<13x21x3x1xi32>'}}
  %0 = "tosa.reshape"(%arg0) {new_shape = array<i64: 13, 21, 3, 1>} : (tensor<13x21x3xf32>) -> tensor<13x21x3x1xi32>
  return
}

// -----

func.func @test_const_attribute_type_mismatch() -> tensor<100x100xf32> {
  // expected-error@+1 {{'tosa.const' op failed to verify that all of {value, output} have same shape}}
  %0 = "tosa.const"() {value = dense<0.000000e+00> : tensor<1x1xf32>} : () -> tensor<100x100xf32>
  return %0 : tensor<100x100xf32>
}

// -----

func.func @test_reshape_static_zero_dim_input(%arg0 : tensor<13x0x3xf32>) -> () {
  // expected-error@+1 {{'tosa.reshape' op tensor has a dimension with size zero. Each dimension of a tensor must have size >= 1}}
  %0 = "tosa.reshape"(%arg0) {new_shape = array<i64: 13, 21, 3>} : (tensor<13x0x3xf32>) -> tensor<13x0x3xf32>
  return
}

// -----

func.func @test_reshape_zero_dim_input(%arg0 : tensor<?x0x3xf32>) -> () {
  // expected-error@+1 {{'tosa.reshape' op tensor has a dimension with size zero. Each dimension of a tensor must have size >= 1}}
  %0 = "tosa.reshape"(%arg0) {new_shape = array<i64: 13, 21, 3>} : (tensor<?x0x3xf32>) -> tensor<13x0x3xf32>
  return
}

// -----

func.func @test_conv2d_static_zero_dim_input(%arg0: tensor<1x29x0x4xf32>, %arg1: tensor<16x3x3x4xf32>, %arg2: tensor<16xf32>) -> tensor<1x27x27x16xf32> {
  // expected-error@+1 {{'tosa.conv2d' op tensor has a dimension with size zero. Each dimension of a tensor must have size >= 1}}
  %0 = "tosa.conv2d"(%arg0, %arg1, %arg2) {dilation = array<i64: 1, 1>, pad = array<i64: 0, 0, 0, 0>, stride = array<i64: 1, 1>}
           : (tensor<1x29x0x4xf32>, tensor<16x3x3x4xf32>, tensor<16xf32>) -> tensor<1x27x27x16xf32>
  return %0 : tensor<1x27x27x16xf32>
}

// -----

func.func @test_conv2d_zero_dim_input(%arg0: tensor<1x?x0x4xf32>, %arg1: tensor<16x3x3x4xf32>, %arg2: tensor<16xf32>) -> tensor<1x27x27x16xf32> {
  // expected-error@+1 {{'tosa.conv2d' op tensor has a dimension with size zero. Each dimension of a tensor must have size >= 1}}
  %0 = "tosa.conv2d"(%arg0, %arg1, %arg2) {dilation = array<i64: 1, 1>, pad = array<i64: 0, 0, 0, 0>, stride = array<i64: 1, 1>}
           : (tensor<1x?x0x4xf32>, tensor<16x3x3x4xf32>, tensor<16xf32>) -> tensor<1x27x27x16xf32>
  return %0 : tensor<1x27x27x16xf32>
}


// -----

func.func @test_avg_pool2d_static_zero_dim_input(%arg0: tensor<1x0x7x9xf32>) -> tensor<1x7x7x9xf32> {
  // expected-error@+1 {{'tosa.avg_pool2d' op tensor has a dimension with size zero. Each dimension of a tensor must have size >= 1}}
    %0 = "tosa.avg_pool2d"(%arg0) {acc_type = f32, kernel = array<i64: 2, 2>, pad = array<i64: 0, 1, 0, 1>, stride = array<i64: 1, 1>} 
      : (tensor<1x0x7x9xf32>) -> tensor<1x7x7x9xf32>
    return %0 : tensor<1x7x7x9xf32>
}

// -----

func.func @test_avg_pool2d_zero_dim_input(%arg0: tensor<1x0x?x9xf32>) -> tensor<1x7x7x9xf32> {
  // expected-error@+1 {{'tosa.avg_pool2d' op tensor has a dimension with size zero. Each dimension of a tensor must have size >= 1}}  
    %0 = "tosa.avg_pool2d"(%arg0) {acc_type = f32, kernel = array<i64: 2, 2>, pad = array<i64: 0, 1, 0, 1>, stride = array<i64: 1, 1>} 
      : (tensor<1x0x?x9xf32>) -> tensor<1x7x7x9xf32>
    return %0 : tensor<1x7x7x9xf32>
}