File: transpose-fold.mlir

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (61 lines) | stat: -rw-r--r-- 3,196 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
// RUN: mlir-opt %s --canonicalize -split-input-file | FileCheck %s

// CHECK-LABEL:   func.func @test_cancel_transpose_transpose(
// CHECK-SAME:                                               %[[VAL_0:.*]]: tensor<1x2x3xi32>) -> tensor<1x2x3xi32> {
// CHECK:           return %[[VAL_0]] : tensor<1x2x3xi32>
// CHECK:         }

func.func @test_cancel_transpose_transpose(%arg0: tensor<1x2x3xi32>) -> (tensor<1x2x3xi32>) {
	%0 = arith.constant dense<[1, 2, 0]> : tensor<3xi32>
	%1 = "tosa.transpose"(%arg0, %0) : (tensor<1x2x3xi32>, tensor<3xi32>) -> (tensor<2x3x1xi32>)
	%2 = arith.constant dense<[2, 0, 1]> : tensor<3xi32>
	%3 = "tosa.transpose"(%1, %2) : (tensor<2x3x1xi32>, tensor<3xi32>) -> tensor<1x2x3xi32>
  return %3 : tensor<1x2x3xi32>
}

// -----

// CHECK-LABEL:   func.func @test_remove_identity_transpose(
// CHECK-SAME:                                              %[[VAL_0:.*]]: tensor<1x2x3xi32>) -> tensor<1x2x3xi32> {
// CHECK:           return %[[VAL_0]] : tensor<1x2x3xi32>
// CHECK:         }

func.func @test_remove_identity_transpose(%arg0: tensor<1x2x3xi32>) -> (tensor<1x2x3xi32>) {
	%0 = arith.constant dense<[0, 1, 2]> : tensor<3xi32>
	%1 = "tosa.transpose"(%arg0, %0) : (tensor<1x2x3xi32>, tensor<3xi32>) -> (tensor<1x2x3xi32>)
  return %1 : tensor<1x2x3xi32>
}

// -----

// CHECK-LABEL:   func.func @test_do_not_cancel_different_transpose(
// CHECK-SAME:                                                      %[[VAL_0:.*]]: tensor<2x3x4x5xi32>) -> tensor<5x4x3x2xi32> {
// CHECK:           %[[VAL_1:.*]] = arith.constant dense<[3, 2, 1, 0]> : tensor<4xi32>
// CHECK:           %[[VAL_2:.*]] = "tosa.transpose"(%[[VAL_0]], %[[VAL_1]]) : (tensor<2x3x4x5xi32>, tensor<4xi32>) -> tensor<5x4x3x2xi32>
// CHECK:           return %[[VAL_2]] : tensor<5x4x3x2xi32>
// CHECK:         }

func.func @test_do_not_cancel_different_transpose(%arg0: tensor<2x3x4x5xi32>) -> (tensor<5x4x3x2xi32>) {
	%0 = arith.constant dense<[1, 2, 0, 3]> : tensor<4xi32>
	%1 = "tosa.transpose"(%arg0, %0) : (tensor<2x3x4x5xi32>, tensor<4xi32>) -> (tensor<3x4x2x5xi32>)
	%2 = arith.constant dense<[3, 1, 0, 2]> : tensor<4xi32>
	%3 = "tosa.transpose"(%1, %2) : (tensor<3x4x2x5xi32>, tensor<4xi32>) -> tensor<5x4x3x2xi32>
  return %3 : tensor<5x4x3x2xi32>
}

// -----

// CHECK-LABEL:   func.func @test_prefer_compose_transpose(
// CHECK-SAME:                                                      %[[VAL_0:.*]]: tensor<1x2x3x4xi32>) -> tensor<4x3x2x1xi32> {
// CHECK:           %[[VAL_1:.*]] = arith.constant dense<[3, 2, 1, 0]> : tensor<4xi32>
// CHECK:           %[[VAL_2:.*]] = "tosa.transpose"(%[[VAL_0]], %[[VAL_1]]) : (tensor<1x2x3x4xi32>, tensor<4xi32>) -> tensor<4x3x2x1xi32>
// CHECK:           return %[[VAL_2]] : tensor<4x3x2x1xi32>
// CHECK:         }

func.func @test_prefer_compose_transpose(%arg0: tensor<1x2x3x4xi32>) -> (tensor<4x3x2x1xi32>) {
	%0 = arith.constant dense<[1, 2, 0, 3]> : tensor<4xi32>
	%1 = "tosa.transpose"(%arg0, %0) : (tensor<1x2x3x4xi32>, tensor<4xi32>) -> (tensor<2x3x1x4xi32>)
	%2 = arith.constant dense<[3, 1, 0, 2]> : tensor<4xi32>
	%3 = "tosa.transpose"(%1, %2) : (tensor<2x3x1x4xi32>, tensor<4xi32>) -> tensor<4x3x2x1xi32>
  return %3 : tensor<4x3x2x1xi32>
}