1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
|
// RUN: mlir-opt %s --test-transform-dialect-interpreter -canonicalize --split-input-file | FileCheck %s
// CHECK-LABEL: func @vector_transfer_ops_0d_memref(
// CHECK-SAME: %[[MEM:.*]]: memref<f32>
// CHECK-SAME: %[[VV:.*]]: vector<1x1x1xf32>
func.func @vector_transfer_ops_0d_memref(%M: memref<f32>, %v: vector<1x1x1xf32>) {
%f0 = arith.constant 0.0 : f32
// CHECK-NEXT: %[[s:.*]] = memref.load %[[MEM]][] : memref<f32>
// CHECK-NEXT: %[[V:.*]] = vector.broadcast %[[s]] : f32 to vector<f32>
%0 = vector.transfer_read %M[], %f0 : memref<f32>, vector<f32>
// CHECK-NEXT: %[[ss:.*]] = vector.extractelement %[[V]][] : vector<f32>
// CHECK-NEXT: memref.store %[[ss]], %[[MEM]][] : memref<f32>
vector.transfer_write %0, %M[] : vector<f32>, memref<f32>
// CHECK-NEXT: %[[VV:.*]] = vector.extract %arg1[0, 0, 0] : vector<1x1x1xf32>
// CHECK-NEXT: memref.store %[[VV]], %[[MEM]][] : memref<f32>
vector.store %v, %M[] : memref<f32>, vector<1x1x1xf32>
return
}
// CHECK-LABEL: func @vector_transfer_ops_0d_tensor(
// CHECK-SAME: %[[SOURCE:.*]]: tensor<f32>
func.func @vector_transfer_ops_0d_tensor(%M: tensor<f32>) -> vector<1xf32> {
%f0 = arith.constant 0.0 : f32
// CHECK-NEXT: %[[S:.*]] = tensor.extract %[[SOURCE]][] : tensor<f32>
// CHECK-NEXT: %[[V:.*]] = vector.broadcast %[[S]] : f32 to vector<1xf32>
%0 = vector.transfer_read %M[], %f0 {permutation_map = affine_map<()->(0)>} :
tensor<f32>, vector<1xf32>
// CHECK-NEXT: return %[[V]]
return %0: vector<1xf32>
}
// transfer_read/write are lowered to vector.load/store
// CHECK-LABEL: func @transfer_to_load(
// CHECK-SAME: %[[MEM:.*]]: memref<8x8xf32>,
// CHECK-SAME: %[[IDX:.*]]: index) -> vector<4xf32> {
// CHECK-NEXT: %[[RES:.*]] = vector.load %[[MEM]][%[[IDX]], %[[IDX]]] : memref<8x8xf32>, vector<4xf32>
// CHECK-NEXT: vector.store %[[RES:.*]], %[[MEM]][%[[IDX]], %[[IDX]]] : memref<8x8xf32>, vector<4xf32>
// CHECK-NEXT: return %[[RES]] : vector<4xf32>
// CHECK-NEXT: }
func.func @transfer_to_load(%mem : memref<8x8xf32>, %i : index) -> vector<4xf32> {
%cf0 = arith.constant 0.0 : f32
%res = vector.transfer_read %mem[%i, %i], %cf0 {in_bounds = [true]} : memref<8x8xf32>, vector<4xf32>
vector.transfer_write %res, %mem[%i, %i] {in_bounds = [true]} : vector<4xf32>, memref<8x8xf32>
return %res : vector<4xf32>
}
// n-D results are also supported.
// CHECK-LABEL: func @transfer_2D(
// CHECK-SAME: %[[MEM:.*]]: memref<8x8xf32>,
// CHECK-SAME: %[[IDX:.*]]: index) -> vector<2x4xf32> {
// CHECK-NEXT: %[[RES:.*]] = vector.load %[[MEM]][%[[IDX]], %[[IDX]]] : memref<8x8xf32>, vector<2x4xf32>
// CHECK-NEXT: vector.store %[[RES:.*]], %[[MEM]][%[[IDX]], %[[IDX]]] : memref<8x8xf32>, vector<2x4xf32>
// CHECK-NEXT: return %[[RES]] : vector<2x4xf32>
// CHECK-NEXT: }
func.func @transfer_2D(%mem : memref<8x8xf32>, %i : index) -> vector<2x4xf32> {
%cf0 = arith.constant 0.0 : f32
%res = vector.transfer_read %mem[%i, %i], %cf0 {in_bounds = [true, true]} : memref<8x8xf32>, vector<2x4xf32>
vector.transfer_write %res, %mem[%i, %i] {in_bounds = [true, true]} : vector<2x4xf32>, memref<8x8xf32>
return %res : vector<2x4xf32>
}
// Vector element types are supported when the result has the same type.
// CHECK-LABEL: func @transfer_vector_element(
// CHECK-SAME: %[[MEM:.*]]: memref<8x8xvector<2x4xf32>>,
// CHECK-SAME: %[[IDX:.*]]: index) -> vector<2x4xf32> {
// CHECK-NEXT: %[[RES:.*]] = vector.load %[[MEM]][%[[IDX]], %[[IDX]]] : memref<8x8xvector<2x4xf32>>, vector<2x4xf32>
// CHECK-NEXT: vector.store %[[RES:.*]], %[[MEM]][%[[IDX]], %[[IDX]]] : memref<8x8xvector<2x4xf32>>, vector<2x4xf32>
// CHECK-NEXT: return %[[RES]] : vector<2x4xf32>
// CHECK-NEXT: }
func.func @transfer_vector_element(%mem : memref<8x8xvector<2x4xf32>>, %i : index) -> vector<2x4xf32> {
%cf0 = arith.constant dense<0.0> : vector<2x4xf32>
%res = vector.transfer_read %mem[%i, %i], %cf0 : memref<8x8xvector<2x4xf32>>, vector<2x4xf32>
vector.transfer_write %res, %mem[%i, %i] : vector<2x4xf32>, memref<8x8xvector<2x4xf32>>
return %res : vector<2x4xf32>
}
// TODO: Vector element types are not supported yet when the result has a
// different type.
// CHECK-LABEL: func @transfer_vector_element_different_types(
// CHECK-SAME: %[[MEM:.*]]: memref<8x8xvector<2x4xf32>>,
// CHECK-SAME: %[[IDX:.*]]: index) -> vector<1x2x4xf32> {
// CHECK-NEXT: %[[CF0:.*]] = arith.constant dense<0.000000e+00> : vector<2x4xf32>
// CHECK-NEXT: %[[RES:.*]] = vector.transfer_read %[[MEM]][%[[IDX]], %[[IDX]]], %[[CF0]] {in_bounds = [true]} : memref<8x8xvector<2x4xf32>>, vector<1x2x4xf32>
// CHECK-NEXT: vector.transfer_write %[[RES:.*]], %[[MEM]][%[[IDX]], %[[IDX]]] {in_bounds = [true]} : vector<1x2x4xf32>, memref<8x8xvector<2x4xf32>>
// CHECK-NEXT: return %[[RES]] : vector<1x2x4xf32>
// CHECK-NEXT: }
func.func @transfer_vector_element_different_types(%mem : memref<8x8xvector<2x4xf32>>, %i : index) -> vector<1x2x4xf32> {
%cf0 = arith.constant dense<0.0> : vector<2x4xf32>
%res = vector.transfer_read %mem[%i, %i], %cf0 {in_bounds = [true]} : memref<8x8xvector<2x4xf32>>, vector<1x2x4xf32>
vector.transfer_write %res, %mem[%i, %i] {in_bounds = [true]} : vector<1x2x4xf32>, memref<8x8xvector<2x4xf32>>
return %res : vector<1x2x4xf32>
}
// TODO: transfer_read/write cannot be lowered because there is a dimension
// that is not guaranteed to be in-bounds.
// CHECK-LABEL: func @transfer_2D_not_inbounds(
// CHECK-SAME: %[[MEM:.*]]: memref<8x8xf32>,
// CHECK-SAME: %[[IDX:.*]]: index) -> vector<2x4xf32> {
// CHECK-NEXT: %[[CF0:.*]] = arith.constant 0.000000e+00 : f32
// CHECK-NEXT: %[[RES:.*]] = vector.transfer_read %[[MEM]][%[[IDX]], %[[IDX]]], %[[CF0]] {in_bounds = [true, false]} : memref<8x8xf32>, vector<2x4xf32>
// CHECK-NEXT: vector.transfer_write %[[RES]], %[[MEM]][%[[IDX]], %[[IDX]]] {in_bounds = [false, true]} : vector<2x4xf32>, memref<8x8xf32>
// CHECK-NEXT: return %[[RES]] : vector<2x4xf32>
// CHECK-NEXT: }
func.func @transfer_2D_not_inbounds(%mem : memref<8x8xf32>, %i : index) -> vector<2x4xf32> {
%cf0 = arith.constant 0.0 : f32
%res = vector.transfer_read %mem[%i, %i], %cf0 {in_bounds = [true, false]} : memref<8x8xf32>, vector<2x4xf32>
vector.transfer_write %res, %mem[%i, %i] {in_bounds = [false, true]} : vector<2x4xf32>, memref<8x8xf32>
return %res : vector<2x4xf32>
}
// TODO: transfer_read/write cannot be lowered because they are not guaranteed
// to be in-bounds.
// CHECK-LABEL: func @transfer_not_inbounds(
// CHECK-SAME: %[[MEM:.*]]: memref<8x8xf32>,
// CHECK-SAME: %[[IDX:.*]]: index) -> vector<4xf32> {
// CHECK-NEXT: %[[CF0:.*]] = arith.constant 0.000000e+00 : f32
// CHECK-NEXT: %[[RES:.*]] = vector.transfer_read %[[MEM]][%[[IDX]], %[[IDX]]], %[[CF0]] : memref<8x8xf32>, vector<4xf32>
// CHECK-NEXT: vector.transfer_write %[[RES]], %[[MEM]][%[[IDX]], %[[IDX]]] : vector<4xf32>, memref<8x8xf32>
// CHECK-NEXT: return %[[RES]] : vector<4xf32>
// CHECK-NEXT: }
func.func @transfer_not_inbounds(%mem : memref<8x8xf32>, %i : index) -> vector<4xf32> {
%cf0 = arith.constant 0.0 : f32
%res = vector.transfer_read %mem[%i, %i], %cf0 : memref<8x8xf32>, vector<4xf32>
vector.transfer_write %res, %mem[%i, %i] : vector<4xf32>, memref<8x8xf32>
return %res : vector<4xf32>
}
// CHECK-LABEL: func @transfer_nondefault_layout(
// CHECK-SAME: %[[MEM:.*]]: memref<8x8xf32, #{{.*}}>,
// CHECK-SAME: %[[IDX:.*]]: index) -> vector<4xf32> {
// CHECK-NEXT: %[[RES:.*]] = vector.load %[[MEM]][%[[IDX]], %[[IDX]]] : memref<8x8xf32, #{{.*}}>, vector<4xf32>
// CHECK-NEXT: vector.store %[[RES]], %[[MEM]][%[[IDX]], %[[IDX]]] : memref<8x8xf32, #{{.*}}>, vector<4xf32>
// CHECK-NEXT: return %[[RES]] : vector<4xf32>
// CHECK-NEXT: }
#layout = affine_map<(d0, d1) -> (d0*16 + d1)>
func.func @transfer_nondefault_layout(%mem : memref<8x8xf32, #layout>, %i : index) -> vector<4xf32> {
%cf0 = arith.constant 0.0 : f32
%res = vector.transfer_read %mem[%i, %i], %cf0 {in_bounds = [true]} : memref<8x8xf32, #layout>, vector<4xf32>
vector.transfer_write %res, %mem[%i, %i] {in_bounds = [true]} : vector<4xf32>, memref<8x8xf32, #layout>
return %res : vector<4xf32>
}
// TODO: transfer_read/write cannot be lowered to vector.load/store yet when the
// permutation map is not the minor identity map (up to broadcasting).
// CHECK-LABEL: func @transfer_perm_map(
// CHECK-SAME: %[[MEM:.*]]: memref<8x8xf32>,
// CHECK-SAME: %[[IDX:.*]]: index) -> vector<4xf32> {
// CHECK-NEXT: %[[CF0:.*]] = arith.constant 0.000000e+00 : f32
// CHECK-NEXT: %[[RES:.*]] = vector.transfer_read %[[MEM]][%[[IDX]], %[[IDX]]], %[[CF0]] {in_bounds = [true], permutation_map = #{{.*}}} : memref<8x8xf32>, vector<4xf32>
// CHECK-NEXT: return %[[RES]] : vector<4xf32>
// CHECK-NEXT: }
func.func @transfer_perm_map(%mem : memref<8x8xf32>, %i : index) -> vector<4xf32> {
%cf0 = arith.constant 0.0 : f32
%res = vector.transfer_read %mem[%i, %i], %cf0 {in_bounds = [true], permutation_map = affine_map<(d0, d1) -> (d0)>} : memref<8x8xf32>, vector<4xf32>
return %res : vector<4xf32>
}
// Lowering of transfer_read with broadcasting is supported (note that a `load`
// is generated instead of a `vector.load`).
// CHECK-LABEL: func @transfer_broadcasting(
// CHECK-SAME: %[[MEM:.*]]: memref<8x8xf32>,
// CHECK-SAME: %[[IDX:.*]]: index) -> vector<4xf32> {
// CHECK-NEXT: %[[LOAD:.*]] = memref.load %[[MEM]][%[[IDX]], %[[IDX]]] : memref<8x8xf32>
// CHECK-NEXT: %[[RES:.*]] = vector.broadcast %[[LOAD]] : f32 to vector<4xf32>
// CHECK-NEXT: return %[[RES]] : vector<4xf32>
// CHECK-NEXT: }
#broadcast_1d = affine_map<(d0, d1) -> (0)>
func.func @transfer_broadcasting(%mem : memref<8x8xf32>, %i : index) -> vector<4xf32> {
%cf0 = arith.constant 0.0 : f32
%res = vector.transfer_read %mem[%i, %i], %cf0
{in_bounds = [true], permutation_map = #broadcast_1d}
: memref<8x8xf32>, vector<4xf32>
return %res : vector<4xf32>
}
// CHECK-LABEL: func @transfer_scalar(
// CHECK-SAME: %[[MEM:.*]]: memref<?x?xf32>,
// CHECK-SAME: %[[IDX:.*]]: index) -> vector<1xf32> {
// CHECK-NEXT: %[[LOAD:.*]] = memref.load %[[MEM]][%[[IDX]], %[[IDX]]] : memref<?x?xf32>
// CHECK-NEXT: %[[RES:.*]] = vector.broadcast %[[LOAD]] : f32 to vector<1xf32>
// CHECK-NEXT: return %[[RES]] : vector<1xf32>
// CHECK-NEXT: }
func.func @transfer_scalar(%mem : memref<?x?xf32>, %i : index) -> vector<1xf32> {
%cf0 = arith.constant 0.0 : f32
%res = vector.transfer_read %mem[%i, %i], %cf0 {in_bounds = [true]} : memref<?x?xf32>, vector<1xf32>
return %res : vector<1xf32>
}
// An example with two broadcasted dimensions.
// CHECK-LABEL: func @transfer_broadcasting_2D(
// CHECK-SAME: %[[MEM:.*]]: memref<8x8xf32>,
// CHECK-SAME: %[[IDX:.*]]: index) -> vector<4x4xf32> {
// CHECK-NEXT: %[[LOAD:.*]] = memref.load %[[MEM]][%[[IDX]], %[[IDX]]] : memref<8x8xf32>
// CHECK-NEXT: %[[RES:.*]] = vector.broadcast %[[LOAD]] : f32 to vector<4x4xf32>
// CHECK-NEXT: return %[[RES]] : vector<4x4xf32>
// CHECK-NEXT: }
#broadcast_2d = affine_map<(d0, d1) -> (0, 0)>
func.func @transfer_broadcasting_2D(%mem : memref<8x8xf32>, %i : index) -> vector<4x4xf32> {
%cf0 = arith.constant 0.0 : f32
%res = vector.transfer_read %mem[%i, %i], %cf0
{in_bounds = [true, true], permutation_map = #broadcast_2d}
: memref<8x8xf32>, vector<4x4xf32>
return %res : vector<4x4xf32>
}
// More complex broadcasting case (here a `vector.load` is generated).
// CHECK-LABEL: func @transfer_broadcasting_complex(
// CHECK-SAME: %[[MEM:.*]]: memref<10x20x30x8x8xf32>,
// CHECK-SAME: %[[IDX:.*]]: index) -> vector<3x2x4x5xf32> {
// CHECK-NEXT: %[[LOAD:.*]] = vector.load %[[MEM]][%[[IDX]], %[[IDX]], %[[IDX]], %[[IDX]], %[[IDX]]] : memref<10x20x30x8x8xf32>, vector<3x1x1x5xf32>
// CHECK-NEXT: %[[RES:.*]] = vector.broadcast %[[LOAD]] : vector<3x1x1x5xf32> to vector<3x2x4x5xf32>
// CHECK-NEXT: return %[[RES]] : vector<3x2x4x5xf32>
// CHECK-NEXT: }
#broadcast_2d_in_4d = affine_map<(d0, d1, d2, d3, d4) -> (d1, 0, 0, d4)>
func.func @transfer_broadcasting_complex(%mem : memref<10x20x30x8x8xf32>, %i : index) -> vector<3x2x4x5xf32> {
%cf0 = arith.constant 0.0 : f32
%res = vector.transfer_read %mem[%i, %i, %i, %i, %i], %cf0
{in_bounds = [true, true, true, true], permutation_map = #broadcast_2d_in_4d}
: memref<10x20x30x8x8xf32>, vector<3x2x4x5xf32>
return %res : vector<3x2x4x5xf32>
}
transform.sequence failures(propagate) {
^bb1(%func_op: !transform.op<"func.func">):
transform.apply_patterns to %func_op {
transform.apply_patterns.vector.lower_transfer max_transfer_rank = 99
transform.apply_patterns.vector.transfer_permutation_patterns
} : !transform.op<"func.func">
}
// -----
#map0 = affine_map<(d0, d1, d2, d3) -> (d1, d0, 0, 0)>
#map1 = affine_map<(d0, d1, d2, d3) -> (0, d1, 0, d0)>
#map2 = affine_map<(d0, d1, d2, d3) -> (d3, d1, 0, 0)>
#map3 = affine_map<(d0, d1) -> (d1, d0, 0, 0)>
#map4 = affine_map<(d0, d1) -> (0, d1, 0, d0)>
#map5 = affine_map<(d0, d1, d2, d3) -> (d2, d1, d3, d0)>
#map6 = affine_map<(d0, d1) -> (0)>
// CHECK-DAG: #[[$MAP0:.*]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, 0, 0)>
// CHECK-DAG: #[[$MAP1:.*]] = affine_map<(d0, d1, d2, d3) -> (d1, 0, d3)>
// CHECK-LABEL: func @transfer_read_permutations
func.func @transfer_read_permutations(%arg0 : memref<?x?xf32>, %arg1 : memref<?x?x?x?xf32>, %m: i1)
-> (vector<7x14x8x16xf32>, vector<7x14x8x16xf32>, vector<7x14x8x16xf32>,
vector<7x14x8x16xf32>, vector<7x14x8x16xf32>, vector<7x14x8x16xf32>, vector<8xf32>) {
// CHECK-DAG: %[[CF0:.*]] = arith.constant 0.000000e+00 : f32
// CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index
%cst = arith.constant 0.000000e+00 : f32
%c0 = arith.constant 0 : index
// CHECK: %[[MASK0:.*]] = vector.splat %{{.*}} : vector<14x7xi1>
%mask0 = vector.splat %m : vector<14x7xi1>
%0 = vector.transfer_read %arg1[%c0, %c0, %c0, %c0], %cst, %mask0 {in_bounds = [true, false, true, true], permutation_map = #map0} : memref<?x?x?x?xf32>, vector<7x14x8x16xf32>
// CHECK: vector.transfer_read {{.*}} %[[MASK0]] {in_bounds = [false, true, true, true], permutation_map = #[[$MAP0]]} : memref<?x?x?x?xf32>, vector<14x7x8x16xf32>
// CHECK: vector.transpose %{{.*}}, [1, 0, 2, 3] : vector<14x7x8x16xf32> to vector<7x14x8x16xf32>
// CHECK: %[[MASK1:.*]] = vector.splat %{{.*}} : vector<16x14xi1>
%mask1 = vector.splat %m : vector<16x14xi1>
%1 = vector.transfer_read %arg1[%c0, %c0, %c0, %c0], %cst, %mask1 {permutation_map = #map1} : memref<?x?x?x?xf32>, vector<7x14x8x16xf32>
// CHECK: vector.transfer_read {{.*}} %[[MASK1]] {permutation_map = #[[$MAP0]]} : memref<?x?x?x?xf32>, vector<16x14x7x8xf32>
// CHECK: vector.transpose %{{.*}}, [2, 1, 3, 0] : vector<16x14x7x8xf32> to vector<7x14x8x16xf32>
// CHECK: %[[MASK3:.*]] = vector.splat %{{.*}} : vector<14x7xi1>
%mask2 = vector.splat %m : vector<14x7xi1>
%2 = vector.transfer_read %arg1[%c0, %c0, %c0, %c0], %cst, %mask2 {in_bounds = [true, false, true, true], permutation_map = #map2} : memref<?x?x?x?xf32>, vector<7x14x8x16xf32>
// CHECK: vector.transfer_read {{.*}} %[[MASK3]] {in_bounds = [false, true, true], permutation_map = #[[$MAP1]]} : memref<?x?x?x?xf32>, vector<14x16x7xf32>
// CHECK: vector.broadcast %{{.*}} : vector<14x16x7xf32> to vector<8x14x16x7xf32>
// CHECK: vector.transpose %{{.*}}, [3, 1, 0, 2] : vector<8x14x16x7xf32> to vector<7x14x8x16xf32>
%3 = vector.transfer_read %arg0[%c0, %c0], %cst {permutation_map = #map3} : memref<?x?xf32>, vector<7x14x8x16xf32>
// CHECK: vector.transfer_read %{{.*}}[%[[C0]], %[[C0]]], %[[CF0]] : memref<?x?xf32>, vector<14x7xf32>
// CHECK: vector.broadcast %{{.*}} : vector<14x7xf32> to vector<8x16x14x7xf32>
// CHECK: vector.transpose %{{.*}}, [3, 2, 0, 1] : vector<8x16x14x7xf32> to vector<7x14x8x16xf32>
%4 = vector.transfer_read %arg0[%c0, %c0], %cst {permutation_map = #map4} : memref<?x?xf32>, vector<7x14x8x16xf32>
// CHECK: vector.transfer_read %{{.*}}[%[[C0]], %[[C0]]], %[[CF0]] : memref<?x?xf32>, vector<16x14xf32>
// CHECK: vector.broadcast %{{.*}} : vector<16x14xf32> to vector<7x8x16x14xf32>
// CHECK: vector.transpose %{{.*}}, [0, 3, 1, 2] : vector<7x8x16x14xf32> to vector<7x14x8x16xf32>
%5 = vector.transfer_read %arg1[%c0, %c0, %c0, %c0], %cst {permutation_map = #map5} : memref<?x?x?x?xf32>, vector<7x14x8x16xf32>
// CHECK: vector.transfer_read %{{.*}}[%[[C0]], %[[C0]], %[[C0]], %[[C0]]], %[[CF0]] : memref<?x?x?x?xf32>, vector<16x14x7x8xf32>
// CHECK: vector.transpose %{{.*}}, [2, 1, 3, 0] : vector<16x14x7x8xf32> to vector<7x14x8x16xf32>
%6 = vector.transfer_read %arg0[%c0, %c0], %cst {permutation_map = #map6} : memref<?x?xf32>, vector<8xf32>
// CHECK: memref.load %{{.*}}[%[[C0]], %[[C0]]] : memref<?x?xf32>
// CHECK: vector.broadcast %{{.*}} : f32 to vector<8xf32>
return %0, %1, %2, %3, %4, %5, %6 : vector<7x14x8x16xf32>, vector<7x14x8x16xf32>,
vector<7x14x8x16xf32>, vector<7x14x8x16xf32>, vector<7x14x8x16xf32>,
vector<7x14x8x16xf32>, vector<8xf32>
}
// CHECK-LABEL: func @transfer_write_permutations
// CHECK-SAME: %[[ARG0:.*]]: memref<?x?x?x?xf32>
// CHECK-SAME: %[[ARG1:.*]]: tensor<?x?x?x?xf32>
// CHECK-SAME: %[[ARG2:.*]]: vector<7x14x8x16xf32>
// CHECK-SAME: %[[ARG3:.*]]: vector<8x16xf32>
// CHECK-SAME: %[[M:.*]]: i1
func.func @transfer_write_permutations(
%arg0 : memref<?x?x?x?xf32>, %arg1 : tensor<?x?x?x?xf32>,
%v1 : vector<7x14x8x16xf32>, %v2 : vector<8x16xf32>, %m: i1) -> tensor<?x?x?x?xf32> {
// CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index
%c0 = arith.constant 0 : index
// CHECK: %[[MASK:.*]] = vector.splat %[[M]] : vector<16x14x7x8xi1>
%mask0 = vector.splat %m : vector<16x14x7x8xi1>
%0 = vector.transfer_write %v1, %arg1[%c0, %c0, %c0, %c0], %mask0 {in_bounds = [true, false, false, true], permutation_map = affine_map<(d0, d1, d2, d3) -> (d2, d1, d3, d0)>} : vector<7x14x8x16xf32>, tensor<?x?x?x?xf32>
// CHECK: %[[NEW_VEC0:.*]] = vector.transpose %{{.*}} [3, 1, 0, 2] : vector<7x14x8x16xf32> to vector<16x14x7x8xf32>
// CHECK: %[[NEW_RES0:.*]] = vector.transfer_write %[[NEW_VEC0]], %[[ARG1]][%c0, %c0, %c0, %c0], %[[MASK]] {in_bounds = [true, false, true, false]} : vector<16x14x7x8xf32>, tensor<?x?x?x?xf32>
vector.transfer_write %v2, %arg0[%c0, %c0, %c0, %c0] {permutation_map = affine_map<(d0, d1, d2, d3) -> (d3, d2)>} : vector<8x16xf32>, memref<?x?x?x?xf32>
// CHECK: %[[NEW_VEC1:.*]] = vector.transpose %{{.*}} [1, 0] : vector<8x16xf32> to vector<16x8xf32>
// CHECK: vector.transfer_write %[[NEW_VEC1]], %[[ARG0]][%c0, %c0, %c0, %c0] : vector<16x8xf32>, memref<?x?x?x?xf32>
return %0 : tensor<?x?x?x?xf32>
}
// CHECK-LABEL: func @transfer_write_broadcast_unit_dim
// CHECK-SAME: %[[ARG0:.*]]: memref<?x?x?x?xf32>
// CHECK-SAME: %[[ARG1:.*]]: tensor<?x?x?x?xf32>
// CHECK-SAME: %[[ARG2:.*]]: vector<14x8x16xf32>
// CHECK-SAME: %[[ARG3:.*]]: vector<8x16xf32>
// CHECK-SAME: %[[M:.*]]: i1
func.func @transfer_write_broadcast_unit_dim(
%arg0 : memref<?x?x?x?xf32>, %arg1 : tensor<?x?x?x?xf32>,
%v1 : vector<14x8x16xf32>, %v2 : vector<8x16xf32>, %m: i1) -> tensor<?x?x?x?xf32> {
// CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index
%c0 = arith.constant 0 : index
%0 = vector.transfer_write %v1, %arg1[%c0, %c0, %c0, %c0] {in_bounds = [false, false, true], permutation_map = affine_map<(d0, d1, d2, d3) -> (d0, d1, d3)>} : vector<14x8x16xf32>, tensor<?x?x?x?xf32>
// CHECK: %[[NEW_VEC0:.*]] = vector.broadcast %{{.*}} : vector<14x8x16xf32> to vector<1x14x8x16xf32>
// CHECK: %[[NEW_VEC1:.*]] = vector.transpose %[[NEW_VEC0]], [1, 2, 0, 3] : vector<1x14x8x16xf32> to vector<14x8x1x16xf32>
// CHECK: %[[NEW_RES0:.*]] = vector.transfer_write %[[NEW_VEC1]], %[[ARG1]][%[[C0]], %[[C0]], %[[C0]], %[[C0]]] {in_bounds = [false, false, true, true]} : vector<14x8x1x16xf32>, tensor<?x?x?x?xf32>
vector.transfer_write %v2, %arg0[%c0, %c0, %c0, %c0] {permutation_map = affine_map<(d0, d1, d2, d3) -> (d1, d2)>} : vector<8x16xf32>, memref<?x?x?x?xf32>
// CHECK: %[[NEW_VEC2:.*]] = vector.broadcast %{{.*}} : vector<8x16xf32> to vector<1x8x16xf32>
// CHECK: %[[NEW_VEC3:.*]] = vector.transpose %[[NEW_VEC2]], [1, 2, 0] : vector<1x8x16xf32> to vector<8x16x1xf32>
// CHECK: vector.transfer_write %[[NEW_VEC3]], %[[ARG0]][%[[C0]], %[[C0]], %[[C0]], %[[C0]]] {in_bounds = [false, false, true]} : vector<8x16x1xf32>, memref<?x?x?x?xf32>
return %0 : tensor<?x?x?x?xf32>
}
transform.sequence failures(propagate) {
^bb1(%func_op: !transform.op<"func.func">):
transform.apply_patterns to %func_op {
transform.apply_patterns.vector.lower_transfer max_transfer_rank = 99
transform.apply_patterns.vector.transfer_permutation_patterns
} : !transform.op<"func.func">
}
|