File: traits.mlir

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (178 lines) | stat: -rw-r--r-- 7,311 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
// RUN: mlir-opt %s -split-input-file -verify-diagnostics

// Verify that ops with broadcastable trait verifies operand and result type
// combinations and emits an error for invalid combinations.

func.func @broadcast_scalar_scalar_scalar(tensor<i32>, tensor<i32>) -> tensor<i32> {
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
  %0 = "test.broadcastable"(%arg0, %arg1) : (tensor<i32>, tensor<i32>) -> tensor<i32>
  return %0 : tensor<i32>
}

// -----

func.func @broadcast_tensor_scalar_tensor(tensor<4xi32>, tensor<i32>) -> tensor<4xi32> {
^bb0(%arg0: tensor<4xi32>, %arg1: tensor<i32>):
  %0 = "test.broadcastable"(%arg0, %arg1) : (tensor<4xi32>, tensor<i32>) -> tensor<4xi32>
  return %0 : tensor<4xi32>
}

// -----

// Check only one dimension has size 1
func.func @broadcast_tensor_tensor_tensor(tensor<4x3x2xi32>, tensor<3x1xi32>) -> tensor<4x3x2xi32> {
^bb0(%arg0: tensor<4x3x2xi32>, %arg1: tensor<3x1xi32>):
  %0 = "test.broadcastable"(%arg0, %arg1) : (tensor<4x3x2xi32>, tensor<3x1xi32>) -> tensor<4x3x2xi32>
  return %0 : tensor<4x3x2xi32>
}

// -----

// Check multiple dimensions have size 1
func.func @broadcast_tensor_tensor_tensor(tensor<8x1x6x1xi32>, tensor<7x1x5xi32>) -> tensor<8x7x6x5xi32> {
^bb0(%arg0: tensor<8x1x6x1xi32>, %arg1: tensor<7x1x5xi32>):
  %0 = "test.broadcastable"(%arg0, %arg1) : (tensor<8x1x6x1xi32>, tensor<7x1x5xi32>) -> tensor<8x7x6x5xi32>
  return %0 : tensor<8x7x6x5xi32>
}

// -----

// Check leading unknown dimension
func.func @broadcast_tensor_tensor_tensor(tensor<?x1x6x1xi32>, tensor<7x1x5xi32>) -> tensor<?x7x6x5xi32> {
^bb0(%arg0: tensor<?x1x6x1xi32>, %arg1: tensor<7x1x5xi32>):
  %0 = "test.broadcastable"(%arg0, %arg1) : (tensor<?x1x6x1xi32>, tensor<7x1x5xi32>) -> tensor<?x7x6x5xi32>
  return %0 : tensor<?x7x6x5xi32>
}

// -----

// Check unknown dimension in the middle
func.func @broadcast_tensor_tensor_tensor(tensor<8x1x?x1xi32>, tensor<7x1x5xi32>) -> tensor<8x7x?x5xi32> {
^bb0(%arg0: tensor<8x1x?x1xi32>, %arg1: tensor<7x1x5xi32>):
  %0 = "test.broadcastable"(%arg0, %arg1) : (tensor<8x1x?x1xi32>, tensor<7x1x5xi32>) -> tensor<8x7x?x5xi32>
  return %0 : tensor<8x7x?x5xi32>
}

// -----

// Check incompatible vector and tensor result type
func.func @broadcast_scalar_vector_vector(tensor<4xf32>, tensor<4xf32>) -> vector<4xf32> {
^bb0(%arg0: tensor<4xf32>, %arg1: tensor<4xf32>):
  // expected-error @+1 {{op result #0 must be tensor of any type values, but got 'vector<4xf32>'}}
  %0 = "test.broadcastable"(%arg0, %arg1) : (tensor<4xf32>, tensor<4xf32>) -> vector<4xf32>
  return %0 : vector<4xf32>
}

// -----

// Check incompatible operand types with known dimension
func.func @broadcast_tensor_tensor_tensor(tensor<4x3x2xi32>, tensor<3x3xi32>) -> tensor<4x3x2xi32> {
^bb0(%arg0: tensor<4x3x2xi32>, %arg1: tensor<3x3xi32>):
  // expected-error @+1 {{operands don't have broadcast-compatible shapes}}
  %0 = "test.broadcastable"(%arg0, %arg1) : (tensor<4x3x2xi32>, tensor<3x3xi32>) -> tensor<4x3x2xi32>
  return %0 : tensor<4x3x2xi32>
}

// -----

// Check incompatible result type with known dimension
func.func @broadcast_tensor_tensor_tensor(tensor<4x3x2xi32>, tensor<3x1xi32>) -> tensor<4x3x3xi32> {
^bb0(%arg0: tensor<4x3x2xi32>, %arg1: tensor<3x1xi32>):
  // expected-error @+1 {{op result type '4x3x3' not broadcast compatible with broadcasted operands's shapes '4x3x2'}}
  %0 = "test.broadcastable"(%arg0, %arg1) : (tensor<4x3x2xi32>, tensor<3x1xi32>) -> tensor<4x3x3xi32>
  return %0 : tensor<4x3x3xi32>
}

// -----

// Check incompatible result type with known dimension
func.func @broadcast_tensor_tensor_tensor(tensor<8x1x6x1xi32>, tensor<7x1x5xi32>) -> tensor<8x7x6x1xi32> {
^bb0(%arg0: tensor<8x1x6x1xi32>, %arg1: tensor<7x1x5xi32>):
  // expected-error @+1 {{op result type '8x7x6x1' not broadcast compatible with broadcasted operands's shapes '8x7x6x5'}}
  %0 = "test.broadcastable"(%arg0, %arg1) : (tensor<8x1x6x1xi32>, tensor<7x1x5xi32>) -> tensor<8x7x6x1xi32>
  return %0 : tensor<8x7x6x1xi32>
}

// -----

func.func @broadcast_tensor_tensor_tensor(tensor<2xi32>, tensor<2xi32>) -> tensor<*xi32> {
^bb0(%arg0: tensor<2xi32>, %arg1: tensor<2xi32>):
  %0 = "test.broadcastable"(%arg0, %arg1) : (tensor<2xi32>, tensor<2xi32>) -> tensor<*xi32>
  return %0 : tensor<*xi32>
}

// -----

func.func @broadcast_tensor_tensor_tensor(tensor<4x3x2xi32>, tensor<?xi32>) -> tensor<4x3x2xi32> {
^bb0(%arg0: tensor<4x3x2xi32>, %arg1: tensor<?xi32>):
  %0 = "test.broadcastable"(%arg0, %arg1) : (tensor<4x3x2xi32>, tensor<?xi32>) -> tensor<4x3x2xi32>
  return %0 : tensor<4x3x2xi32>
}

// -----

// Error for inferred dynamic dimension but existing static dimensions
func.func @broadcast_tensor_tensor_tensor(%arg0: tensor<?xi32>, %arg1: tensor<?xi32>) -> tensor<2xi32> {
  // expected-error @+1 {{op result type '2' not broadcast compatible with broadcasted operands's shapes '?'}}
  %0 = "test.broadcastable"(%arg0, %arg1) : (tensor<?xi32>, tensor<?xi32>) -> tensor<2xi32>
  return %0 : tensor<2xi32>
}

// -----

func.func @broadcast_tensor_tensor_tensor(%arg0: tensor<?x6x1xi32>, %arg1: tensor<*xi32>) -> tensor<?x6x?xi32> {
  %0 = "test.broadcastable"(%arg0, %arg1) : (tensor<?x6x1xi32>, tensor<*xi32>) -> tensor<?x6x?xi32>
  return %0 : tensor<?x6x?xi32>
}

// -----

// Unranked operands but ranked result
func.func @broadcast_tensor_tensor_tensor(tensor<*xi32>, tensor<*xi32>) -> tensor<2xi32> {
^bb0(%arg0: tensor<*xi32>, %arg1: tensor<*xi32>):
  %0 = "test.broadcastable"(%arg0, %arg1) : (tensor<*xi32>, tensor<*xi32>) -> tensor<2xi32>
  return %0 : tensor<2xi32>
}

// -----

// Unranked operand and compatible ranked result
func.func @broadcast_tensor_tensor_tensor(tensor<3x2xi32>, tensor<*xi32>) -> tensor<4x3x2xi32> {
^bb0(%arg0: tensor<3x2xi32>, %arg1: tensor<*xi32>):
  %0 = "test.broadcastable"(%arg0, %arg0, %arg1) : (tensor<3x2xi32>, tensor<3x2xi32>, tensor<*xi32>) -> tensor<4x3x2xi32>
  return %0 : tensor<4x3x2xi32>
}

// -----

func.func @broadcast_tensor_tensor_tensor(tensor<3x2xi32>, tensor<*xi32>) -> tensor<2xi32> {
^bb0(%arg0: tensor<3x2xi32>, %arg1: tensor<*xi32>):
  // expected-error @+1 {{op result type '2' not broadcast compatible with broadcasted operands's shapes '3x2'}}
  %0 = "test.broadcastable"(%arg0, %arg1) : (tensor<3x2xi32>, tensor<*xi32>) -> tensor<2xi32>
  return %0 : tensor<2xi32>
}

// -----

// Correct use of broadcast semantics for input dimensions
func.func @broadcast_tensor_tensor_tensor(%arg0: tensor<?x1x6x1xi32>, %arg1: tensor<7x1x5xi32>) -> tensor<?x7x6x5xi32> {
  %0 = "test.broadcastable"(%arg0, %arg1) : (tensor<?x1x6x1xi32>, tensor<7x1x5xi32>) -> tensor<?x7x6x5xi32>
  return %0 : tensor<?x7x6x5xi32>
}

// -----

// Incorrect attempt to use broadcast semantics for result
func.func @broadcast_tensor_tensor_tensor(%arg0: tensor<1xi32>, %arg1: tensor<1xi32>) -> tensor<5xi32> {
  // expected-error @+1 {{op result type '5' not broadcast compatible with broadcasted operands's shapes '1'}}
  %0 = "test.broadcastable"(%arg0, %arg1) : (tensor<1xi32>, tensor<1xi32>) -> tensor<5xi32>
  return %0 : tensor<5xi32>
}

// -----

func.func @broadcastDifferentResultType(tensor<4xi32>, tensor<4xi32>) -> tensor<4xi1> {
^bb0(%arg0: tensor<4xi32>, %arg1: tensor<4xi32>):
  %0 = "test.broadcastable"(%arg0, %arg1) : (tensor<4xi32>, tensor<4xi32>) -> tensor<4xi1>
  return %0 : tensor<4xi1>
}