File: test-subtensor-insert-multiple-uses.mlir

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (37 lines) | stat: -rw-r--r-- 1,837 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
// RUN: mlir-opt %s -linalg-bufferize \
// RUN: -arith-bufferize -tensor-bufferize -func-bufferize \
// RUN: -finalizing-bufferize -buffer-deallocation \
// RUN: -convert-linalg-to-loops -convert-scf-to-cf -convert-linalg-to-llvm -expand-strided-metadata -lower-affine -convert-arith-to-llvm --finalize-memref-to-llvm -convert-func-to-llvm -reconcile-unrealized-casts | \
// RUN: mlir-cpu-runner -e main -entry-point-result=void \
// RUN:   -shared-libs=%mlir_c_runner_utils,%mlir_runner_utils \
// RUN: | FileCheck %s

func.func @main() {
  %const = arith.constant dense<10.0> : tensor<2xf32>
  %insert_val = arith.constant dense<20.0> : tensor<1xf32>

  // Both of these insert_slice ops insert into the same original tensor
  // value `%const`. This can easily cause bugs if at the memref level
  // we attempt to write in-place into the memref that %const has been
  // converted into.
  %inserted_at_position_0 = tensor.insert_slice %insert_val into %const[0][1][1] : tensor<1xf32> into tensor<2xf32>
  %inserted_at_position_1 = tensor.insert_slice %insert_val into %const[1][1][1] : tensor<1xf32> into tensor<2xf32>

  %unranked_at_position_0 = tensor.cast %inserted_at_position_0 : tensor<2xf32> to tensor<*xf32>
  call @printMemrefF32(%unranked_at_position_0) : (tensor<*xf32>) -> ()

  //      CHECK: Unranked Memref base@ = {{0x[-9a-f]*}}
  // CHECK-SAME: rank = 1 offset = 0 sizes = [2] strides = [1] data =
  // CHECK-NEXT: [20, 10]

  %unranked_at_position_1 = tensor.cast %inserted_at_position_1 : tensor<2xf32> to tensor<*xf32>
  call @printMemrefF32(%unranked_at_position_1) : (tensor<*xf32>) -> ()

  //      CHECK: Unranked Memref base@ = {{0x[-9a-f]*}}
  // CHECK-SAME: rank = 1 offset = 0 sizes = [2] strides = [1] data =
  // CHECK-NEXT: [10, 20]

  return
}

func.func private @printMemrefF32(%ptr : tensor<*xf32>)