1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
|
// DEFINE: %{option} = enable-runtime-library=true
// DEFINE: %{run_option} =
// DEFINE: %{compile} = mlir-opt %s --sparse-compiler=%{option}
// DEFINE: %{run} = mlir-cpu-runner \
// DEFINE: -e entry -entry-point-result=void \
// DEFINE: -shared-libs=%mlir_lib_dir/libmlir_c_runner_utils%shlibext,%mlir_lib_dir/libmlir_runner_utils%shlibext %{run_option} | \
// DEFINE: FileCheck %s
//
// RUN: %{compile} | %{run}
//
// Do the same run, but now with direct IR generation.
// REDEFINE: %{option} = "enable-runtime-library=false enable-buffer-initialization=true"
// RUN: %{compile} | %{run}
//
// Do the same run, but now with direct IR generation and vectorization.
// REDEFINE: %{option} = "enable-runtime-library=false enable-buffer-initialization=true vl=4 reassociate-fp-reductions=true enable-index-optimizations=true"
// RUN: %{compile} | %{run}
#MAT_C_C = #sparse_tensor.encoding<{lvlTypes = ["compressed", "compressed"]}>
#MAT_D_C = #sparse_tensor.encoding<{lvlTypes = ["dense", "compressed"]}>
#MAT_C_D = #sparse_tensor.encoding<{lvlTypes = ["compressed", "dense"]}>
#MAT_D_D = #sparse_tensor.encoding<{
lvlTypes = ["dense", "dense"],
dimToLvl = affine_map<(i,j) -> (j,i)>
}>
#MAT_C_C_P = #sparse_tensor.encoding<{
lvlTypes = [ "compressed", "compressed" ],
dimToLvl = affine_map<(i,j) -> (j,i)>
}>
#MAT_C_D_P = #sparse_tensor.encoding<{
lvlTypes = [ "compressed", "dense" ],
dimToLvl = affine_map<(i,j) -> (j,i)>
}>
#MAT_D_C_P = #sparse_tensor.encoding<{
lvlTypes = [ "dense", "compressed" ],
dimToLvl = affine_map<(i,j) -> (j,i)>
}>
module {
func.func private @printMemrefF64(%ptr : tensor<*xf64>)
func.func private @printMemref1dF64(%ptr : memref<?xf64>) attributes { llvm.emit_c_interface }
//
// Tests without permutation (concatenate on dimension 1)
//
// Concats all sparse matrices (with different encodings) to a sparse matrix.
func.func @concat_sparse_sparse_dim1(%arg0: tensor<4x2xf64, #MAT_C_C>, %arg1: tensor<4x3xf64, #MAT_C_D>, %arg2: tensor<4x4xf64, #MAT_D_C>) -> tensor<4x9xf64, #MAT_C_C> {
%0 = sparse_tensor.concatenate %arg0, %arg1, %arg2 {dimension = 1 : index}
: tensor<4x2xf64, #MAT_C_C>, tensor<4x3xf64, #MAT_C_D>, tensor<4x4xf64, #MAT_D_C> to tensor<4x9xf64, #MAT_C_C>
return %0 : tensor<4x9xf64, #MAT_C_C>
}
// Concats all sparse matrices (with different encodings) to a dense matrix.
func.func @concat_sparse_dense_dim1(%arg0: tensor<4x2xf64, #MAT_C_C>, %arg1: tensor<4x3xf64, #MAT_C_D>, %arg2: tensor<4x4xf64, #MAT_D_C>) -> tensor<4x9xf64> {
%0 = sparse_tensor.concatenate %arg0, %arg1, %arg2 {dimension = 1 : index}
: tensor<4x2xf64, #MAT_C_C>, tensor<4x3xf64, #MAT_C_D>, tensor<4x4xf64, #MAT_D_C> to tensor<4x9xf64>
return %0 : tensor<4x9xf64>
}
// Concats mix sparse and dense matrices to a sparse matrix.
func.func @concat_mix_sparse_dim1(%arg0: tensor<4x2xf64>, %arg1: tensor<4x3xf64, #MAT_C_D>, %arg2: tensor<4x4xf64, #MAT_D_C>) -> tensor<4x9xf64, #MAT_C_C> {
%0 = sparse_tensor.concatenate %arg0, %arg1, %arg2 {dimension = 1 : index}
: tensor<4x2xf64>, tensor<4x3xf64, #MAT_C_D>, tensor<4x4xf64, #MAT_D_C> to tensor<4x9xf64, #MAT_C_C>
return %0 : tensor<4x9xf64, #MAT_C_C>
}
// Concats mix sparse and dense matrices to a dense matrix.
func.func @concat_mix_dense_dim1(%arg0: tensor<4x2xf64>, %arg1: tensor<4x3xf64, #MAT_C_D>, %arg2: tensor<4x4xf64, #MAT_D_C>) -> tensor<4x9xf64> {
%0 = sparse_tensor.concatenate %arg0, %arg1, %arg2 {dimension = 1 : index}
: tensor<4x2xf64>, tensor<4x3xf64, #MAT_C_D>, tensor<4x4xf64, #MAT_D_C> to tensor<4x9xf64>
return %0 : tensor<4x9xf64>
}
func.func @dump_mat_4x9(%A: tensor<4x9xf64, #MAT_C_C>) {
%c = sparse_tensor.convert %A : tensor<4x9xf64, #MAT_C_C> to tensor<4x9xf64>
%cu = tensor.cast %c : tensor<4x9xf64> to tensor<*xf64>
call @printMemrefF64(%cu) : (tensor<*xf64>) -> ()
%n = sparse_tensor.number_of_entries %A : tensor<4x9xf64, #MAT_C_C>
vector.print %n : index
%1 = sparse_tensor.values %A : tensor<4x9xf64, #MAT_C_C> to memref<?xf64>
call @printMemref1dF64(%1) : (memref<?xf64>) -> ()
return
}
func.func @dump_mat_dense_4x9(%A: tensor<4x9xf64>) {
%1 = tensor.cast %A : tensor<4x9xf64> to tensor<*xf64>
call @printMemrefF64(%1) : (tensor<*xf64>) -> ()
return
}
// Driver method to call and verify kernels.
func.func @entry() {
%m42 = arith.constant dense<
[ [ 1.0, 0.0 ],
[ 3.1, 0.0 ],
[ 0.0, 2.0 ],
[ 0.0, 0.0 ] ]> : tensor<4x2xf64>
%m43 = arith.constant dense<
[ [ 1.0, 0.0, 1.0 ],
[ 1.0, 0.0, 0.5 ],
[ 0.0, 0.0, 1.0 ],
[ 5.0, 2.0, 0.0 ] ]> : tensor<4x3xf64>
%m44 = arith.constant dense<
[ [ 0.0, 0.0, 1.5, 1.0],
[ 0.0, 3.5, 0.0, 0.0],
[ 1.0, 5.0, 2.0, 0.0],
[ 1.0, 0.5, 0.0, 0.0] ]> : tensor<4x4xf64>
%sm42cc = sparse_tensor.convert %m42 : tensor<4x2xf64> to tensor<4x2xf64, #MAT_C_C>
%sm43cd = sparse_tensor.convert %m43 : tensor<4x3xf64> to tensor<4x3xf64, #MAT_C_D>
%sm44dc = sparse_tensor.convert %m44 : tensor<4x4xf64> to tensor<4x4xf64, #MAT_D_C>
// CHECK: {{\[}}[1, 0, 1, 0, 1, 0, 0, 1.5, 1],
// CHECK-NEXT: [3.1, 0, 1, 0, 0.5, 0, 3.5, 0, 0],
// CHECK-NEXT: [0, 2, 0, 0, 1, 1, 5, 2, 0],
// CHECK-NEXT: [0, 0, 5, 2, 0, 1, 0.5, 0, 0]]
// CHECK-NEXT: 18
// CHECK: [1, 1, 1, 1.5, 1, 3.1, 1, 0.5, 3.5, 2, 1, 1, 5, 2, 5, 2, 1, 0.5
%8 = call @concat_sparse_sparse_dim1(%sm42cc, %sm43cd, %sm44dc)
: (tensor<4x2xf64, #MAT_C_C>, tensor<4x3xf64, #MAT_C_D>, tensor<4x4xf64, #MAT_D_C>) -> tensor<4x9xf64, #MAT_C_C>
call @dump_mat_4x9(%8) : (tensor<4x9xf64, #MAT_C_C>) -> ()
// CHECK: {{\[}}[1, 0, 1, 0, 1, 0, 0, 1.5, 1],
// CHECK-NEXT: [3.1, 0, 1, 0, 0.5, 0, 3.5, 0, 0],
// CHECK-NEXT: [0, 2, 0, 0, 1, 1, 5, 2, 0],
// CHECK-NEXT: [0, 0, 5, 2, 0, 1, 0.5, 0, 0]]
%9 = call @concat_sparse_dense_dim1(%sm42cc, %sm43cd, %sm44dc)
: (tensor<4x2xf64, #MAT_C_C>, tensor<4x3xf64, #MAT_C_D>, tensor<4x4xf64, #MAT_D_C>) -> tensor<4x9xf64>
call @dump_mat_dense_4x9(%9) : (tensor<4x9xf64>) -> ()
// CHECK: {{\[}}[1, 0, 1, 0, 1, 0, 0, 1.5, 1],
// CHECK-NEXT: [3.1, 0, 1, 0, 0.5, 0, 3.5, 0, 0],
// CHECK-NEXT: [0, 2, 0, 0, 1, 1, 5, 2, 0],
// CHECK-NEXT: [0, 0, 5, 2, 0, 1, 0.5, 0, 0]]
// CHECK-NEXT: 18
// CHECK: [1, 1, 1, 1.5, 1, 3.1, 1, 0.5, 3.5, 2, 1, 1, 5, 2, 5, 2, 1, 0.5
%10 = call @concat_mix_sparse_dim1(%m42, %sm43cd, %sm44dc)
: (tensor<4x2xf64>, tensor<4x3xf64, #MAT_C_D>, tensor<4x4xf64, #MAT_D_C>) -> tensor<4x9xf64, #MAT_C_C>
call @dump_mat_4x9(%10) : (tensor<4x9xf64, #MAT_C_C>) -> ()
// CHECK: {{\[}}[1, 0, 1, 0, 1, 0, 0, 1.5, 1],
// CHECK-NEXT: [3.1, 0, 1, 0, 0.5, 0, 3.5, 0, 0],
// CHECK-NEXT: [0, 2, 0, 0, 1, 1, 5, 2, 0],
// CHECK-NEXT: [0, 0, 5, 2, 0, 1, 0.5, 0, 0]]
%11 = call @concat_mix_dense_dim1(%m42, %sm43cd, %sm44dc)
: (tensor<4x2xf64>, tensor<4x3xf64, #MAT_C_D>, tensor<4x4xf64, #MAT_D_C>) -> tensor<4x9xf64>
call @dump_mat_dense_4x9(%11) : (tensor<4x9xf64>) -> ()
// Release resources.
bufferization.dealloc_tensor %sm42cc : tensor<4x2xf64, #MAT_C_C>
bufferization.dealloc_tensor %sm43cd : tensor<4x3xf64, #MAT_C_D>
bufferization.dealloc_tensor %sm44dc : tensor<4x4xf64, #MAT_D_C>
bufferization.dealloc_tensor %8 : tensor<4x9xf64, #MAT_C_C>
bufferization.dealloc_tensor %9 : tensor<4x9xf64>
bufferization.dealloc_tensor %10 : tensor<4x9xf64, #MAT_C_C>
bufferization.dealloc_tensor %11 : tensor<4x9xf64>
return
}
}
|