1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
|
// DEFINE: %{option} = "enable-runtime-library=false"
// DEFINE: %{compile} = mlir-opt %s --sparse-compiler=%{option}
// DEFINE: %{run} = mlir-cpu-runner \
// DEFINE: -e entry -entry-point-result=void \
// DEFINE: -shared-libs=%mlir_c_runner_utils | \
// DEFINE: FileCheck %s
//
// RUN: %{compile} | %{run}
//
// Do the same run, but now with direct IR generation and vectorization.
// REDEFINE: %{option} = "enable-runtime-library=false vl=2 reassociate-fp-reductions=true enable-index-optimizations=true"
// RUN: %{compile} | %{run}
// Do the same run, but now with direct IR generation and, if available, VLA
// vectorization.
// REDEFINE: %{option} = "enable-runtime-library=false vl=4 enable-arm-sve=%ENABLE_VLA"
// REDEFINE: %{run} = %lli_host_or_aarch64_cmd \
// REDEFINE: --entry-function=entry_lli \
// REDEFINE: --extra-module=%S/Inputs/main_for_lli.ll \
// REDEFINE: %VLA_ARCH_ATTR_OPTIONS \
// REDEFINE: --dlopen=%mlir_native_utils_lib_dir/libmlir_c_runner_utils%shlibext | \
// REDEFINE: FileCheck %s
// RUN: %{compile} | mlir-translate -mlir-to-llvmir | %{run}
#DCSR = #sparse_tensor.encoding<{
lvlTypes = [ "compressed", "compressed" ]
}>
#trait = {
indexing_maps = [
affine_map<(i,j) -> (i,j)>, // A
affine_map<(i,j) -> (i,j)>, // B
affine_map<(i,j) -> (i,j)> // x (out)
],
iterator_types = ["parallel", "parallel"],
doc = "X(i, j) = cmp A(i,j) B(i, j)"
}
//
// Integration test that lowers a kernel annotated as sparse to
// actual sparse code, initializes a matching sparse storage scheme
// from file, and runs the resulting code with the JIT compiler.
//
module {
func.func @cmp_all_dense(%arga: tensor<4x4xf64>,
%argb: tensor<4x4xf64>,
%argx: tensor<4x4xi8>) -> tensor<4x4xi8> {
%0 = linalg.generic #trait
ins(%arga, %argb: tensor<4x4xf64>, tensor<4x4xf64>)
outs(%argx: tensor<4x4xi8>) {
^bb(%a: f64, %b: f64, %x: i8):
%0 = arith.cmpf ult, %a, %b : f64
%1 = arith.extui %0 : i1 to i8
linalg.yield %1 : i8
} -> tensor<4x4xi8>
return %0 : tensor<4x4xi8>
}
func.func @cmp_lhs_sparse(%arga: tensor<4x4xf64, #DCSR>,
%argb: tensor<4x4xf64>) -> tensor<4x4xi8, #DCSR> {
%argx = bufferization.alloc_tensor() : tensor<4x4xi8, #DCSR>
%0 = linalg.generic #trait
ins(%arga, %argb: tensor<4x4xf64, #DCSR>, tensor<4x4xf64>)
outs(%argx: tensor<4x4xi8, #DCSR>) {
^bb(%a: f64, %b: f64, %x: i8):
%0 = arith.cmpf ult, %a, %b : f64
%1 = arith.extui %0 : i1 to i8
linalg.yield %1 : i8
} -> tensor<4x4xi8, #DCSR>
return %0 : tensor<4x4xi8, #DCSR>
}
func.func @cmp_all_sparse(%arga: tensor<4x4xf64, #DCSR>,
%argb: tensor<4x4xf64, #DCSR>) -> tensor<4x4xi8, #DCSR> {
%argx = bufferization.alloc_tensor() : tensor<4x4xi8, #DCSR>
%0 = linalg.generic #trait
ins(%arga, %argb: tensor<4x4xf64, #DCSR>, tensor<4x4xf64, #DCSR>)
outs(%argx: tensor<4x4xi8, #DCSR>) {
^bb(%a: f64, %b: f64, %x: i8):
%0 = arith.cmpf ult, %a, %b : f64
%1 = arith.extui %0 : i1 to i8
linalg.yield %1 : i8
} -> tensor<4x4xi8, #DCSR>
return %0 : tensor<4x4xi8, #DCSR>
}
//
// Main driver that constructs matrix and calls the sparse kernel to perform
// element-wise comparison.
//
func.func @entry() {
%d0 = arith.constant 0 : i8
%c0 = arith.constant 0 : index
%lhs_dn = arith.constant dense<
[ [ 0.0, 0.0, 1.5, 1.0],
[ 0.0, 3.5, 0.0, 0.0],
[ 1.0, 5.0, 2.0, 0.0],
[ 1.0, 0.5, 0.0, 0.0] ]> : tensor<4x4xf64>
%rhs_dn = arith.constant dense<
[ [ 0.0, 1.5, 1.0, 1.5],
[ 3.5, 0.0, 0.0, 0.0],
[ 5.0, 2.0, 0.0, 2.0],
[ 0.5, 0.0, 0.0, 0.0] ]> : tensor<4x4xf64>
%lhs_sp = sparse_tensor.convert %lhs_dn : tensor<4x4xf64> to tensor<4x4xf64, #DCSR>
%rhs_sp = sparse_tensor.convert %rhs_dn : tensor<4x4xf64> to tensor<4x4xf64, #DCSR>
%output = arith.constant dense<0> : tensor<4x4xi8>
%all_dn_out = call @cmp_all_dense(%lhs_dn, %rhs_dn, %output)
: (tensor<4x4xf64>, tensor<4x4xf64>, tensor<4x4xi8>) -> tensor<4x4xi8>
%lhs_sp_out = call @cmp_lhs_sparse(%lhs_sp, %rhs_dn)
: (tensor<4x4xf64, #DCSR>, tensor<4x4xf64>) -> tensor<4x4xi8, #DCSR>
%all_sp_out = call @cmp_all_sparse(%lhs_sp, %rhs_sp)
: (tensor<4x4xf64, #DCSR>, tensor<4x4xf64, #DCSR>) -> tensor<4x4xi8, #DCSR>
//
// All should have the same result.
//
// CHECK-COUNT-3: ( ( 0, 1, 0, 1 ), ( 1, 0, 0, 0 ), ( 1, 0, 0, 1 ), ( 0, 0, 0, 0 ) )
%v = vector.transfer_read %all_dn_out[%c0, %c0], %d0
: tensor<4x4xi8>, vector<4x4xi8>
vector.print %v : vector<4x4xi8>
%lhs_sp_ret = sparse_tensor.convert %lhs_sp_out
: tensor<4x4xi8, #DCSR> to tensor<4x4xi8>
%v1 = vector.transfer_read %lhs_sp_ret[%c0, %c0], %d0
: tensor<4x4xi8>, vector<4x4xi8>
vector.print %v1 : vector<4x4xi8>
%rhs_sp_ret = sparse_tensor.convert %all_sp_out
: tensor<4x4xi8, #DCSR> to tensor<4x4xi8>
%v2 = vector.transfer_read %rhs_sp_ret[%c0, %c0], %d0
: tensor<4x4xi8>, vector<4x4xi8>
vector.print %v2 : vector<4x4xi8>
bufferization.dealloc_tensor %lhs_sp : tensor<4x4xf64, #DCSR>
bufferization.dealloc_tensor %rhs_sp : tensor<4x4xf64, #DCSR>
bufferization.dealloc_tensor %lhs_sp_out : tensor<4x4xi8, #DCSR>
bufferization.dealloc_tensor %all_sp_out : tensor<4x4xi8, #DCSR>
return
}
}
|