File: sparse_codegen_dim.mlir

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (66 lines) | stat: -rw-r--r-- 2,246 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
// DEFINE: %{option} = enable-runtime-library=true
// DEFINE: %{compile} = mlir-opt %s --sparse-compiler=%{option}
// DEFINE: %{run} = mlir-cpu-runner \
// DEFINE:  -e entry -entry-point-result=void  \
// DEFINE:  -shared-libs=%mlir_c_runner_utils | \
// DEFINE: FileCheck %s
//
// RUN: %{compile} | %{run}
//
// Do the same run, but now with direct IR generation.
// REDEFINE: %{option} = enable-runtime-library=false
// RUN: %{compile} | %{run}
//
// Do the same run, but now with direct IR generation and vectorization.
// REDEFINE: %{option} = "enable-runtime-library=false vl=2 reassociate-fp-reductions=true enable-index-optimizations=true"
// RUN: %{compile} | %{run}

// Do the same run, but now with direct IR generation and, if available, VLA
// vectorization.
// REDEFINE: %{option} = "enable-runtime-library=false vl=4 enable-arm-sve=%ENABLE_VLA"
// REDEFINE: %{run} = %lli_host_or_aarch64_cmd \
// REDEFINE:   --entry-function=entry_lli \
// REDEFINE:   --extra-module=%S/Inputs/main_for_lli.ll \
// REDEFINE:   %VLA_ARCH_ATTR_OPTIONS \
// REDEFINE:   --dlopen=%mlir_native_utils_lib_dir/libmlir_c_runner_utils%shlibext | \
// REDEFINE: FileCheck %s
// RUN: %{compile} | mlir-translate -mlir-to-llvmir | %{run}

#DCSR  = #sparse_tensor.encoding<{
  lvlTypes = [ "compressed", "compressed"]
}>

module {
  //
  // Main driver.
  //
  func.func @entry() {
    %c0 = arith.constant 0 : index
    %c1 = arith.constant 1 : index
    %c2 = arith.constant 2 : index
    %c3 = arith.constant 3 : index
    %t1 = bufferization.alloc_tensor() : tensor<4x5xf64, #DCSR>
    %t2 = bufferization.alloc_tensor(%c2, %c3) : tensor<?x?xf64, #DCSR>

    %d1_0 = tensor.dim %t1, %c0 : tensor<4x5xf64, #DCSR>
    %d2_0 = tensor.dim %t2, %c0 : tensor<?x?xf64, #DCSR>
    %d1_1 = tensor.dim %t1, %c1 : tensor<4x5xf64, #DCSR>
    %d2_1 = tensor.dim %t2, %c1 : tensor<?x?xf64, #DCSR>

    // CHECK: 4
    vector.print %d1_0 : index
    // CHECK-NEXT: 2
    vector.print %d2_0 : index
    // CHECK-NEXT: 5
    vector.print %d1_1 : index
    // CHECK-NEXT: 3
    vector.print %d2_1 : index

    // Release resources.
    bufferization.dealloc_tensor %t1 : tensor<4x5xf64, #DCSR>
    bufferization.dealloc_tensor %t2 : tensor<?x?xf64, #DCSR>

    return
  }
}