1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
|
// DEFINE: %{option} = enable-runtime-library=true
// DEFINE: %{compile} = mlir-opt %s --sparse-compiler=%{option}
// DEFINE: %{run} = mlir-cpu-runner \
// DEFINE: -e entry -entry-point-result=void \
// DEFINE: -shared-libs=%mlir_c_runner_utils | \
// DEFINE: FileCheck %s
//
// RUN: %{compile} | %{run}
//
// Do the same run, but now with direct IR generation.
// REDEFINE: %{option} = enable-runtime-library=false
// RUN: %{compile} | %{run}
//
// Do the same run, but now with direct IR generation and vectorization.
// REDEFINE: %{option} = "enable-runtime-library=false vl=2 reassociate-fp-reductions=true enable-index-optimizations=true"
// RUN: %{compile} | %{run}
// Do the same run, but now with direct IR generation and, if available, VLA
// vectorization.
// REDEFINE: %{option} = "enable-runtime-library=false vl=4 enable-arm-sve=%ENABLE_VLA"
// REDEFINE: %{run} = %lli_host_or_aarch64_cmd \
// REDEFINE: --entry-function=entry_lli \
// REDEFINE: --extra-module=%S/Inputs/main_for_lli.ll \
// REDEFINE: %VLA_ARCH_ATTR_OPTIONS \
// REDEFINE: --dlopen=%mlir_native_utils_lib_dir/libmlir_c_runner_utils%shlibext | \
// REDEFINE: FileCheck %s
// RUN: %{compile} | mlir-translate -mlir-to-llvmir | %{run}
#SparseVector = #sparse_tensor.encoding<{
lvlTypes = ["compressed"]
}>
#SparseMatrix = #sparse_tensor.encoding<{
lvlTypes = ["compressed", "compressed"]
}>
#Sparse3dTensor = #sparse_tensor.encoding<{
lvlTypes = ["compressed", "compressed", "compressed"]
}>
#Sparse4dTensor = #sparse_tensor.encoding<{
lvlTypes = ["compressed", "compressed", "compressed", "compressed"]
}>
//
// Test with various forms of the two most elementary reshape
// operations: collapse.
//
module {
func.func @collapse_dense(%arg0: tensor<3x4xf64>) -> tensor<12xf64> {
%0 = tensor.collapse_shape %arg0 [[0, 1]] : tensor<3x4xf64> into tensor<12xf64>
return %0 : tensor<12xf64>
}
func.func @collapse_from_sparse(%arg0: tensor<3x4xf64, #SparseMatrix>) -> tensor<12xf64> {
%0 = tensor.collapse_shape %arg0 [[0, 1]] : tensor<3x4xf64, #SparseMatrix> into tensor<12xf64>
return %0 : tensor<12xf64>
}
func.func @collapse_to_sparse(%arg0: tensor<3x4xf64>) -> tensor<12xf64, #SparseVector> {
%0 = tensor.collapse_shape %arg0 [[0, 1]] : tensor<3x4xf64> into tensor<12xf64, #SparseVector>
return %0 : tensor<12xf64, #SparseVector>
}
func.func @collapse_sparse2sparse(%arg0: tensor<3x4xf64, #SparseMatrix>) -> tensor<12xf64, #SparseVector> {
%0 = tensor.collapse_shape %arg0 [[0, 1]] : tensor<3x4xf64, #SparseMatrix> into tensor<12xf64, #SparseVector>
return %0 : tensor<12xf64, #SparseVector>
}
func.func @collapse_dense_6x10(%arg0: tensor<2x3x5x2xf64>) -> tensor<6x10xf64> {
%0 = tensor.collapse_shape %arg0 [[0, 1], [2, 3]] : tensor<2x3x5x2xf64> into tensor<6x10xf64>
return %0 : tensor<6x10xf64>
}
func.func @collapse_from_sparse_6x10(%arg0: tensor<2x3x5x2xf64, #Sparse4dTensor>) -> tensor<6x10xf64> {
%0 = tensor.collapse_shape %arg0 [[0, 1], [2, 3]] : tensor<2x3x5x2xf64, #Sparse4dTensor> into tensor<6x10xf64>
return %0 : tensor<6x10xf64>
}
func.func @collapse_to_sparse_6x10(%arg0: tensor<2x3x5x2xf64>) -> tensor<6x10xf64, #SparseMatrix> {
%0 = tensor.collapse_shape %arg0 [[0, 1], [2, 3]] : tensor<2x3x5x2xf64> into tensor<6x10xf64, #SparseMatrix>
return %0 : tensor<6x10xf64, #SparseMatrix>
}
func.func @collapse_sparse2sparse_6x10(%arg0: tensor<2x3x5x2xf64, #Sparse4dTensor>) -> tensor<6x10xf64, #SparseMatrix> {
%0 = tensor.collapse_shape %arg0 [[0, 1], [2, 3]] : tensor<2x3x5x2xf64, #Sparse4dTensor> into tensor<6x10xf64, #SparseMatrix>
return %0 : tensor<6x10xf64, #SparseMatrix>
}
func.func @collapse_dense_dyn(%arg0: tensor<?x?x?x?xf64>) -> tensor<?x?xf64> {
%0 = tensor.collapse_shape %arg0 [[0, 1], [2, 3]] : tensor<?x?x?x?xf64> into tensor<?x?xf64>
return %0 : tensor<?x?xf64>
}
func.func @collapse_from_sparse_dyn(%arg0: tensor<?x?x?x?xf64, #Sparse4dTensor>) -> tensor<?x?xf64> {
%0 = tensor.collapse_shape %arg0 [[0, 1], [2, 3]] : tensor<?x?x?x?xf64, #Sparse4dTensor> into tensor<?x?xf64>
return %0 : tensor<?x?xf64>
}
func.func @collapse_to_sparse_dyn(%arg0: tensor<?x?x?x?xf64>) -> tensor<?x?xf64, #SparseMatrix> {
%0 = tensor.collapse_shape %arg0 [[0, 1], [2, 3]] : tensor<?x?x?x?xf64> into tensor<?x?xf64, #SparseMatrix>
return %0 : tensor<?x?xf64, #SparseMatrix>
}
func.func @collapse_sparse2sparse_dyn(%arg0: tensor<?x?x?x?xf64, #Sparse4dTensor>) -> tensor<?x?xf64, #SparseMatrix> {
%0 = tensor.collapse_shape %arg0 [[0, 1], [2, 3]] : tensor<?x?x?x?xf64, #Sparse4dTensor> into tensor<?x?xf64, #SparseMatrix>
return %0 : tensor<?x?xf64, #SparseMatrix>
}
//
// Main driver.
//
func.func @entry() {
%c0 = arith.constant 0 : index
%df = arith.constant -1.0 : f64
// Setup test vectors and matrices..
%m = arith.constant dense <[ [ 1.1, 0.0, 1.3, 0.0 ],
[ 2.1, 0.0, 2.3, 0.0 ],
[ 3.1, 0.0, 3.3, 0.0 ]]> : tensor<3x4xf64>
%n = arith.constant dense <[
[ [[ 1.0, 0.0], [ 3.0, 0.0], [ 5.0, 0.0], [ 7.0, 0.0], [ 9.0, 0.0]],
[[ 0.0, 0.0], [ 0.0, 0.0], [ 0.0, 0.0], [ 0.0, 0.0], [ 0.0, 0.0]],
[[21.0, 0.0], [23.0, 0.0], [25.0, 0.0], [27.0, 0.0], [29.0, 0.0]] ],
[ [[ 0.0, 0.0], [ 0.0, 0.0], [ 0.0, 0.0], [ 0.0, 0.0], [ 0.0, 0.0]],
[[41.0, 0.0], [43.0, 0.0], [45.0, 0.0], [47.0, 0.0], [49.0, 0.0]],
[[ 0.0, 0.0], [ 0.0, 0.0], [ 0.0, 0.0], [ 0.0, 0.0], [ 0.0, 0.0]] ] ]> : tensor<2x3x5x2xf64>
%sm = sparse_tensor.convert %m : tensor<3x4xf64> to tensor<3x4xf64, #SparseMatrix>
%sn = sparse_tensor.convert %n : tensor<2x3x5x2xf64> to tensor<2x3x5x2xf64, #Sparse4dTensor>
%dm = tensor.cast %m : tensor<3x4xf64> to tensor<?x?xf64>
%dn = tensor.cast %n : tensor<2x3x5x2xf64> to tensor<?x?x?x?xf64>
%sdn = sparse_tensor.convert %dn : tensor<?x?x?x?xf64> to tensor<?x?x?x?xf64, #Sparse4dTensor>
// Call the kernels.
%collapse0 = call @collapse_dense(%m) : (tensor<3x4xf64>) -> tensor<12xf64>
%collapse1 = call @collapse_from_sparse(%sm) : (tensor<3x4xf64, #SparseMatrix>) -> tensor<12xf64>
%collapse2 = call @collapse_to_sparse(%m) : (tensor<3x4xf64>) -> tensor<12xf64, #SparseVector>
%collapse3 = call @collapse_sparse2sparse(%sm) : (tensor<3x4xf64, #SparseMatrix>) -> tensor<12xf64, #SparseVector>
%collapse4 = call @collapse_dense_6x10(%n) : (tensor<2x3x5x2xf64>) -> tensor<6x10xf64>
%collapse5 = call @collapse_from_sparse_6x10(%sn) : (tensor<2x3x5x2xf64, #Sparse4dTensor>) -> tensor<6x10xf64>
%collapse6 = call @collapse_to_sparse_6x10(%n) : (tensor<2x3x5x2xf64>) -> tensor<6x10xf64, #SparseMatrix>
%collapse7 = call @collapse_sparse2sparse_6x10(%sn) : (tensor<2x3x5x2xf64, #Sparse4dTensor>) -> tensor<6x10xf64, #SparseMatrix>
%collapse8 = call @collapse_dense_dyn(%dn) : (tensor<?x?x?x?xf64>) -> tensor<?x?xf64>
%collapse9 = call @collapse_from_sparse_dyn(%sdn) : (tensor<?x?x?x?xf64, #Sparse4dTensor>) -> tensor<?x?xf64>
%collapse10 = call @collapse_to_sparse_dyn(%dn) : (tensor<?x?x?x?xf64>) -> tensor<?x?xf64, #SparseMatrix>
%collapse11 = call @collapse_sparse2sparse_dyn(%sdn) : (tensor<?x?x?x?xf64, #Sparse4dTensor>) -> tensor<?x?xf64, #SparseMatrix>
//
// Verify results of collapse
//
// CHECK: ( 1.1, 0, 1.3, 0, 2.1, 0, 2.3, 0, 3.1, 0, 3.3, 0 )
// CHECK-NEXT: ( 1.1, 0, 1.3, 0, 2.1, 0, 2.3, 0, 3.1, 0, 3.3, 0 )
// CHECK-NEXT: ( 1.1, 1.3, 2.1, 2.3, 3.1, 3.3
// CHECK-NEXT: ( 1.1, 1.3, 2.1, 2.3, 3.1, 3.3
// CHECK-NEXT: ( ( 1, 0, 3, 0, 5, 0, 7, 0, 9, 0 ),
// CHECK-SAME: ( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ),
// CHECK-SAME: ( 21, 0, 23, 0, 25, 0, 27, 0, 29, 0 ),
// CHECK-SAME: ( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ),
// CHECK-SAME: ( 41, 0, 43, 0, 45, 0, 47, 0, 49, 0 ),
// CHECK-SAME: ( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ) )
// CHECK-NEXT: ( ( 1, 0, 3, 0, 5, 0, 7, 0, 9, 0 ),
// CHECK-SAME: ( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ),
// CHECK-SAME: ( 21, 0, 23, 0, 25, 0, 27, 0, 29, 0 ),
// CHECK-SAME: ( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ),
// CHECK-SAME: ( 41, 0, 43, 0, 45, 0, 47, 0, 49, 0 ),
// CHECK-SAME: ( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ) )
// CHECK-NEXT: ( 1, 3, 5, 7, 9, 21, 23, 25, 27, 29, 41, 43, 45, 47
// CHECK-NEXT: ( 1, 3, 5, 7, 9, 21, 23, 25, 27, 29, 41, 43, 45, 47
// CHECK-NEXT: ( ( 1, 0, 3, 0, 5, 0, 7, 0, 9, 0 ),
// CHECK-SAME: ( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ),
// CHECK-SAME: ( 21, 0, 23, 0, 25, 0, 27, 0, 29, 0 ),
// CHECK-SAME: ( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ),
// CHECK-SAME: ( 41, 0, 43, 0, 45, 0, 47, 0, 49, 0 ),
// CHECK-SAME: ( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ) )
// CHECK-NEXT: ( ( 1, 0, 3, 0, 5, 0, 7, 0, 9, 0 ),
// CHECK-SAME: ( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ),
// CHECK-SAME: ( 21, 0, 23, 0, 25, 0, 27, 0, 29, 0 ),
// CHECK-SAME: ( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ),
// CHECK-SAME: ( 41, 0, 43, 0, 45, 0, 47, 0, 49, 0 ),
// CHECK-SAME: ( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ) )
// CHECK-NEXT: ( 1, 3, 5, 7, 9, 21, 23, 25, 27, 29, 41, 43, 45, 47, 49
// CHECK-NEXT: ( 1, 3, 5, 7, 9, 21, 23, 25, 27, 29, 41, 43, 45, 47, 49
%v0 = vector.transfer_read %collapse0[%c0], %df: tensor<12xf64>, vector<12xf64>
vector.print %v0 : vector<12xf64>
%v1 = vector.transfer_read %collapse1[%c0], %df: tensor<12xf64>, vector<12xf64>
vector.print %v1 : vector<12xf64>
%b2 = sparse_tensor.values %collapse2 : tensor<12xf64, #SparseVector> to memref<?xf64>
%v2 = vector.transfer_read %b2[%c0], %df: memref<?xf64>, vector<12xf64>
vector.print %v2 : vector<12xf64>
%b3 = sparse_tensor.values %collapse3 : tensor<12xf64, #SparseVector> to memref<?xf64>
%v3 = vector.transfer_read %b3[%c0], %df: memref<?xf64>, vector<12xf64>
vector.print %v3 : vector<12xf64>
%v4 = vector.transfer_read %collapse4[%c0, %c0], %df: tensor<6x10xf64>, vector<6x10xf64>
vector.print %v4 : vector<6x10xf64>
%v5 = vector.transfer_read %collapse5[%c0, %c0], %df: tensor<6x10xf64>, vector<6x10xf64>
vector.print %v5 : vector<6x10xf64>
%b6 = sparse_tensor.values %collapse6 : tensor<6x10xf64, #SparseMatrix> to memref<?xf64>
%v6 = vector.transfer_read %b6[%c0], %df: memref<?xf64>, vector<60xf64>
vector.print %v6 : vector<60xf64>
%b7 = sparse_tensor.values %collapse7 : tensor<6x10xf64, #SparseMatrix> to memref<?xf64>
%v7 = vector.transfer_read %b7[%c0], %df: memref<?xf64>, vector<60xf64>
vector.print %v7 : vector<60xf64>
%v8 = vector.transfer_read %collapse8[%c0, %c0], %df: tensor<?x?xf64>, vector<6x10xf64>
vector.print %v8 : vector<6x10xf64>
%v9 = vector.transfer_read %collapse9[%c0, %c0], %df: tensor<?x?xf64>, vector<6x10xf64>
vector.print %v9 : vector<6x10xf64>
%b10 = sparse_tensor.values %collapse10 : tensor<?x?xf64, #SparseMatrix> to memref<?xf64>
%v10 = vector.transfer_read %b10[%c0], %df: memref<?xf64>, vector<60xf64>
vector.print %v10 : vector<60xf64>
%b11 = sparse_tensor.values %collapse11 : tensor<?x?xf64, #SparseMatrix> to memref<?xf64>
%v11 = vector.transfer_read %b11[%c0], %df: memref<?xf64>, vector<60xf64>
vector.print %v11 : vector<60xf64>
// Release sparse resources.
bufferization.dealloc_tensor %sm : tensor<3x4xf64, #SparseMatrix>
bufferization.dealloc_tensor %sn : tensor<2x3x5x2xf64, #Sparse4dTensor>
bufferization.dealloc_tensor %sdn : tensor<?x?x?x?xf64, #Sparse4dTensor>
bufferization.dealloc_tensor %collapse2 : tensor<12xf64, #SparseVector>
bufferization.dealloc_tensor %collapse3 : tensor<12xf64, #SparseVector>
bufferization.dealloc_tensor %collapse6 : tensor<6x10xf64, #SparseMatrix>
bufferization.dealloc_tensor %collapse7 : tensor<6x10xf64, #SparseMatrix>
bufferization.dealloc_tensor %collapse10 : tensor<?x?xf64, #SparseMatrix>
bufferization.dealloc_tensor %collapse11 : tensor<?x?xf64, #SparseMatrix>
// Release dense resources.
bufferization.dealloc_tensor %collapse1 : tensor<12xf64>
bufferization.dealloc_tensor %collapse5 : tensor<6x10xf64>
bufferization.dealloc_tensor %collapse9: tensor<?x?xf64>
return
}
}
|