1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
|
// DEFINE: %{option} = enable-runtime-library=true
// DEFINE: %{compile} = mlir-opt %s --sparse-compiler=%{option}
// DEFINE: %{run} = mlir-cpu-runner \
// DEFINE: -e entry -entry-point-result=void \
// DEFINE: -shared-libs=%mlir_c_runner_utils | \
// DEFINE: FileCheck %s
//
// RUN: %{compile} | %{run}
//
// Do the same run, but now with direct IR generation.
// REDEFINE: %{option} = "enable-runtime-library=false enable-buffer-initialization=true"
// RUN: %{compile} | %{run}
//
// Do the same run, but now with direct IR generation and vectorization.
// REDEFINE: %{option} = "enable-runtime-library=false enable-buffer-initialization=true vl=2 reassociate-fp-reductions=true enable-index-optimizations=true"
// RUN: %{compile} | %{run}
// Do the same run, but now with direct IR generation and, if available, VLA
// vectorization.
// REDEFINE: %{option} = "enable-runtime-library=false vl=4 enable-arm-sve=%ENABLE_VLA"
// REDEFINE: %{run} = %lli_host_or_aarch64_cmd \
// REDEFINE: --entry-function=entry_lli \
// REDEFINE: --extra-module=%S/Inputs/main_for_lli.ll \
// REDEFINE: %VLA_ARCH_ATTR_OPTIONS \
// REDEFINE: --dlopen=%mlir_native_utils_lib_dir/libmlir_c_runner_utils%shlibext | \
// REDEFINE: FileCheck %s
// RUN: %{compile} | mlir-translate -mlir-to-llvmir | %{run}
#SparseVector = #sparse_tensor.encoding<{lvlTypes = ["compressed"]}>
#trait_op = {
indexing_maps = [
affine_map<(i) -> (i)>, // a (in)
affine_map<(i) -> (i)>, // b (in)
affine_map<(i) -> (i)> // x (out)
],
iterator_types = ["parallel"],
doc = "x(i) = a(i) OP b(i)"
}
module {
func.func @cadd(%arga: tensor<?xcomplex<f32>, #SparseVector>,
%argb: tensor<?xcomplex<f32>, #SparseVector>)
-> tensor<?xcomplex<f32>, #SparseVector> {
%c = arith.constant 0 : index
%d = tensor.dim %arga, %c : tensor<?xcomplex<f32>, #SparseVector>
%xv = bufferization.alloc_tensor(%d) : tensor<?xcomplex<f32>, #SparseVector>
%0 = linalg.generic #trait_op
ins(%arga, %argb: tensor<?xcomplex<f32>, #SparseVector>,
tensor<?xcomplex<f32>, #SparseVector>)
outs(%xv: tensor<?xcomplex<f32>, #SparseVector>) {
^bb(%a: complex<f32>, %b: complex<f32>, %x: complex<f32>):
%1 = complex.add %a, %b : complex<f32>
linalg.yield %1 : complex<f32>
} -> tensor<?xcomplex<f32>, #SparseVector>
return %0 : tensor<?xcomplex<f32>, #SparseVector>
}
func.func @cmul(%arga: tensor<?xcomplex<f32>, #SparseVector>,
%argb: tensor<?xcomplex<f32>, #SparseVector>)
-> tensor<?xcomplex<f32>, #SparseVector> {
%c = arith.constant 0 : index
%d = tensor.dim %arga, %c : tensor<?xcomplex<f32>, #SparseVector>
%xv = bufferization.alloc_tensor(%d) : tensor<?xcomplex<f32>, #SparseVector>
%0 = linalg.generic #trait_op
ins(%arga, %argb: tensor<?xcomplex<f32>, #SparseVector>,
tensor<?xcomplex<f32>, #SparseVector>)
outs(%xv: tensor<?xcomplex<f32>, #SparseVector>) {
^bb(%a: complex<f32>, %b: complex<f32>, %x: complex<f32>):
%1 = complex.mul %a, %b : complex<f32>
linalg.yield %1 : complex<f32>
} -> tensor<?xcomplex<f32>, #SparseVector>
return %0 : tensor<?xcomplex<f32>, #SparseVector>
}
func.func @dump(%arg0: tensor<?xcomplex<f32>, #SparseVector>, %d: index) {
%c0 = arith.constant 0 : index
%c1 = arith.constant 1 : index
%mem = sparse_tensor.values %arg0 : tensor<?xcomplex<f32>, #SparseVector> to memref<?xcomplex<f32>>
scf.for %i = %c0 to %d step %c1 {
%v = memref.load %mem[%i] : memref<?xcomplex<f32>>
%real = complex.re %v : complex<f32>
%imag = complex.im %v : complex<f32>
vector.print %real : f32
vector.print %imag : f32
}
return
}
// Driver method to call and verify complex kernels.
func.func @entry() {
// Setup sparse vectors.
%v1 = arith.constant sparse<
[ [0], [28], [31] ],
[ (511.13, 2.0), (3.0, 4.0), (5.0, 6.0) ] > : tensor<32xcomplex<f32>>
%v2 = arith.constant sparse<
[ [1], [28], [31] ],
[ (1.0, 0.0), (2.0, 0.0), (3.0, 0.0) ] > : tensor<32xcomplex<f32>>
%sv1 = sparse_tensor.convert %v1 : tensor<32xcomplex<f32>> to tensor<?xcomplex<f32>, #SparseVector>
%sv2 = sparse_tensor.convert %v2 : tensor<32xcomplex<f32>> to tensor<?xcomplex<f32>, #SparseVector>
// Call sparse vector kernels.
%0 = call @cadd(%sv1, %sv2)
: (tensor<?xcomplex<f32>, #SparseVector>,
tensor<?xcomplex<f32>, #SparseVector>) -> tensor<?xcomplex<f32>, #SparseVector>
%1 = call @cmul(%sv1, %sv2)
: (tensor<?xcomplex<f32>, #SparseVector>,
tensor<?xcomplex<f32>, #SparseVector>) -> tensor<?xcomplex<f32>, #SparseVector>
//
// Verify the results.
//
// CHECK: 511.13
// CHECK-NEXT: 2
// CHECK-NEXT: 1
// CHECK-NEXT: 0
// CHECK-NEXT: 5
// CHECK-NEXT: 4
// CHECK-NEXT: 8
// CHECK-NEXT: 6
// CHECK-NEXT: 6
// CHECK-NEXT: 8
// CHECK-NEXT: 15
// CHECK-NEXT: 18
//
%d1 = arith.constant 4 : index
%d2 = arith.constant 2 : index
call @dump(%0, %d1) : (tensor<?xcomplex<f32>, #SparseVector>, index) -> ()
call @dump(%1, %d2) : (tensor<?xcomplex<f32>, #SparseVector>, index) -> ()
// Release the resources.
bufferization.dealloc_tensor %sv1 : tensor<?xcomplex<f32>, #SparseVector>
bufferization.dealloc_tensor %sv2 : tensor<?xcomplex<f32>, #SparseVector>
bufferization.dealloc_tensor %0 : tensor<?xcomplex<f32>, #SparseVector>
bufferization.dealloc_tensor %1 : tensor<?xcomplex<f32>, #SparseVector>
return
}
}
|