1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
|
// DEFINE: %{option} = "enable-runtime-library=false s2s-strategy=2"
// DEFINE: %{compile} = mlir-opt %s --sparse-compiler=%{option}
// DEFINE: %{run} = mlir-cpu-runner \
// DEFINE: -e entry -entry-point-result=void \
// DEFINE: -shared-libs=%mlir_c_runner_utils | \
// DEFINE: FileCheck %s
//
// RUN: %{compile} | %{run}
//
// Do the same run, but now with direct IR generation and vectorization.
// REDEFINE: %{option} = "enable-runtime-library=false s2s-strategy=2 vl=2 reassociate-fp-reductions=true enable-index-optimizations=true"
// RUN: %{compile} | %{run}
//
// Do the same run, but now with direct IR generation and, if available, VLA
// vectorization.
// REDEFINE: %{option} = "enable-runtime-library=false vl=4 enable-arm-sve=%ENABLE_VLA"
// REDEFINE: %{run} = %lli_host_or_aarch64_cmd \
// REDEFINE: --entry-function=entry_lli \
// REDEFINE: --extra-module=%S/Inputs/main_for_lli.ll \
// REDEFINE: %VLA_ARCH_ATTR_OPTIONS \
// REDEFINE: --dlopen=%mlir_native_utils_lib_dir/libmlir_c_runner_utils%shlibext | \
// REDEFINE: FileCheck %s
// RUN: %{compile} | mlir-translate -mlir-to-llvmir | %{run}
#Tensor1 = #sparse_tensor.encoding<{
lvlTypes = [ "compressed-nu", "singleton-nu", "singleton" ]
}>
#Tensor2 = #sparse_tensor.encoding<{
lvlTypes = [ "dense", "compressed", "dense" ]
}>
#Tensor3 = #sparse_tensor.encoding<{
lvlTypes = [ "dense", "dense", "compressed" ],
dimToLvl = affine_map<(i,j,k) -> (i,k,j)>
}>
module {
//
// Utility for output.
//
func.func @dump(%arg0: tensor<2x3x4xf32>) {
%c0 = arith.constant 0 : index
%d0 = arith.constant -1.0 : f32
%0 = vector.transfer_read %arg0[%c0, %c0, %c0], %d0: tensor<2x3x4xf32>, vector<2x3x4xf32>
vector.print %0 : vector<2x3x4xf32>
return
}
//
// The first test suite (for non-singleton DimLevelTypes).
//
func.func @entry() {
//
// Initialize a 3-dim dense tensor.
//
%src = arith.constant dense<[
[ [ 1.0, 2.0, 3.0, 4.0 ],
[ 5.0, 6.0, 7.0, 8.0 ],
[ 9.0, 10.0, 11.0, 12.0 ] ],
[ [ 13.0, 14.0, 15.0, 16.0 ],
[ 17.0, 18.0, 19.0, 20.0 ],
[ 21.0, 22.0, 23.0, 24.0 ] ]
]> : tensor<2x3x4xf64>
//
// Convert dense tensor directly to various sparse tensors.
//
%s1 = sparse_tensor.convert %src : tensor<2x3x4xf64> to tensor<2x3x4xf64, #Tensor1>
%s2 = sparse_tensor.convert %src : tensor<2x3x4xf64> to tensor<2x3x4xf64, #Tensor2>
%s3 = sparse_tensor.convert %src : tensor<2x3x4xf64> to tensor<2x3x4xf64, #Tensor3>
//
// Convert sparse tensor directly to another sparse format.
//
%t1 = sparse_tensor.convert %s1 : tensor<2x3x4xf64, #Tensor1> to tensor<2x3x4xf32, #Tensor1>
%t2 = sparse_tensor.convert %s2 : tensor<2x3x4xf64, #Tensor2> to tensor<2x3x4xf32, #Tensor2>
%t3 = sparse_tensor.convert %s3 : tensor<2x3x4xf64, #Tensor3> to tensor<2x3x4xf32, #Tensor3>
//
// Convert sparse tensor back to dense.
//
%d1 = sparse_tensor.convert %t1 : tensor<2x3x4xf32, #Tensor1> to tensor<2x3x4xf32>
%d2 = sparse_tensor.convert %t2 : tensor<2x3x4xf32, #Tensor2> to tensor<2x3x4xf32>
%d3 = sparse_tensor.convert %t3 : tensor<2x3x4xf32, #Tensor3> to tensor<2x3x4xf32>
//
// Check round-trip equality. And release dense tensors.
//
// CHECK-COUNT-3: ( ( ( 1, 2, 3, 4 ), ( 5, 6, 7, 8 ), ( 9, 10, 11, 12 ) ), ( ( 13, 14, 15, 16 ), ( 17, 18, 19, 20 ), ( 21, 22, 23, 24 ) ) )
call @dump(%d1) : (tensor<2x3x4xf32>) -> ()
call @dump(%d2) : (tensor<2x3x4xf32>) -> ()
call @dump(%d3) : (tensor<2x3x4xf32>) -> ()
//
// Release sparse tensors.
//
bufferization.dealloc_tensor %t1 : tensor<2x3x4xf32, #Tensor1>
bufferization.dealloc_tensor %t2 : tensor<2x3x4xf32, #Tensor2>
bufferization.dealloc_tensor %t3 : tensor<2x3x4xf32, #Tensor3>
bufferization.dealloc_tensor %s1 : tensor<2x3x4xf64, #Tensor1>
bufferization.dealloc_tensor %s2 : tensor<2x3x4xf64, #Tensor2>
bufferization.dealloc_tensor %s3 : tensor<2x3x4xf64, #Tensor3>
return
}
}
|