1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
|
// Force this file to use the kDirect method for sparse2sparse.
// DEFINE: %{option} = "enable-runtime-library=true s2s-strategy=2"
// DEFINE: %{compile} = mlir-opt %s --sparse-compiler=%{option}
// DEFINE: %{run} = mlir-cpu-runner \
// DEFINE: -e entry -entry-point-result=void \
// DEFINE: -shared-libs=%mlir_c_runner_utils | \
// DEFINE: FileCheck %s
//
// RUN: %{compile} | %{run}
//
// Do the same run, but now with direct IR generation.
// REDEFINE: %{option} = "enable-runtime-library=false s2s-strategy=2"
// RUN: %{compile} | %{run}
//
// Do the same run, but now with direct IR generation and vectorization.
// REDEFINE: %{option} = "enable-runtime-library=false s2s-strategy=2 vl=2 reassociate-fp-reductions=true enable-index-optimizations=true"
// RUN: %{compile} | %{run}
// Do the same run, but now with direct IR generation and, if available, VLA
// vectorization.
// REDEFINE: %{option} = "enable-runtime-library=false vl=4 enable-arm-sve=%ENABLE_VLA"
// REDEFINE: %{run} = %lli_host_or_aarch64_cmd \
// REDEFINE: --entry-function=entry_lli \
// REDEFINE: --extra-module=%S/Inputs/main_for_lli.ll \
// REDEFINE: %VLA_ARCH_ATTR_OPTIONS \
// REDEFINE: --dlopen=%mlir_native_utils_lib_dir/libmlir_c_runner_utils%shlibext | \
// REDEFINE: FileCheck %s
// RUN: %{compile} | mlir-translate -mlir-to-llvmir | %{run}
#Tensor1 = #sparse_tensor.encoding<{
lvlTypes = [ "dense", "dense", "compressed" ]
}>
// NOTE: dense after compressed is not currently supported for the target
// of direct-sparse2sparse conversion. (It's fine for the source though.)
#Tensor2 = #sparse_tensor.encoding<{
lvlTypes = [ "dense", "compressed", "dense" ]
}>
#Tensor3 = #sparse_tensor.encoding<{
lvlTypes = [ "dense", "dense", "compressed" ],
dimToLvl = affine_map<(i,j,k) -> (i,k,j)>
}>
#SingletonTensor1 = #sparse_tensor.encoding<{
lvlTypes = [ "dense", "compressed", "singleton" ]
}>
// This also checks the compressed->dense conversion (when there are zeros).
#SingletonTensor2 = #sparse_tensor.encoding<{
lvlTypes = [ "dense", "dense", "singleton" ]
}>
// This also checks the singleton->compressed conversion.
#SingletonTensor3 = #sparse_tensor.encoding<{
lvlTypes = [ "dense", "dense", "compressed" ]
}>
module {
//
// Utility for output.
//
func.func @dump(%arg0: tensor<2x3x4xf64>) {
%c0 = arith.constant 0 : index
%d0 = arith.constant -1.0 : f64
%0 = vector.transfer_read %arg0[%c0, %c0, %c0], %d0: tensor<2x3x4xf64>, vector<2x3x4xf64>
vector.print %0 : vector<2x3x4xf64>
return
}
//
// The first test suite (for non-singleton DimLevelTypes).
//
func.func @testNonSingleton() {
//
// Initialize a 3-dim dense tensor.
//
%src = arith.constant dense<[
[ [ 1.0, 2.0, 3.0, 4.0 ],
[ 5.0, 6.0, 7.0, 8.0 ],
[ 9.0, 10.0, 11.0, 12.0 ] ],
[ [ 13.0, 14.0, 15.0, 16.0 ],
[ 17.0, 18.0, 19.0, 20.0 ],
[ 21.0, 22.0, 23.0, 24.0 ] ]
]> : tensor<2x3x4xf64>
//
// Convert dense tensor directly to various sparse tensors.
//
%s1 = sparse_tensor.convert %src : tensor<2x3x4xf64> to tensor<2x3x4xf64, #Tensor1>
%s2 = sparse_tensor.convert %src : tensor<2x3x4xf64> to tensor<2x3x4xf64, #Tensor2>
%s3 = sparse_tensor.convert %src : tensor<2x3x4xf64> to tensor<2x3x4xf64, #Tensor3>
//
// Convert sparse tensor directly to another sparse format.
//
%t13 = sparse_tensor.convert %s1 : tensor<2x3x4xf64, #Tensor1> to tensor<2x3x4xf64, #Tensor3>
%t21 = sparse_tensor.convert %s2 : tensor<2x3x4xf64, #Tensor2> to tensor<2x3x4xf64, #Tensor1>
%t23 = sparse_tensor.convert %s2 : tensor<2x3x4xf64, #Tensor2> to tensor<2x3x4xf64, #Tensor3>
%t31 = sparse_tensor.convert %s3 : tensor<2x3x4xf64, #Tensor3> to tensor<2x3x4xf64, #Tensor1>
//
// Convert sparse tensor back to dense.
//
%d13 = sparse_tensor.convert %t13 : tensor<2x3x4xf64, #Tensor3> to tensor<2x3x4xf64>
%d21 = sparse_tensor.convert %t21 : tensor<2x3x4xf64, #Tensor1> to tensor<2x3x4xf64>
%d23 = sparse_tensor.convert %t23 : tensor<2x3x4xf64, #Tensor3> to tensor<2x3x4xf64>
%d31 = sparse_tensor.convert %t31 : tensor<2x3x4xf64, #Tensor1> to tensor<2x3x4xf64>
//
// Check round-trip equality. And release dense tensors.
//
// CHECK-COUNT-5: ( ( ( 1, 2, 3, 4 ), ( 5, 6, 7, 8 ), ( 9, 10, 11, 12 ) ), ( ( 13, 14, 15, 16 ), ( 17, 18, 19, 20 ), ( 21, 22, 23, 24 ) ) )
call @dump(%src) : (tensor<2x3x4xf64>) -> ()
call @dump(%d13) : (tensor<2x3x4xf64>) -> ()
call @dump(%d21) : (tensor<2x3x4xf64>) -> ()
call @dump(%d23) : (tensor<2x3x4xf64>) -> ()
call @dump(%d31) : (tensor<2x3x4xf64>) -> ()
//
// Release sparse tensors.
//
bufferization.dealloc_tensor %t13 : tensor<2x3x4xf64, #Tensor3>
bufferization.dealloc_tensor %t21 : tensor<2x3x4xf64, #Tensor1>
bufferization.dealloc_tensor %t23 : tensor<2x3x4xf64, #Tensor3>
bufferization.dealloc_tensor %t31 : tensor<2x3x4xf64, #Tensor1>
bufferization.dealloc_tensor %s1 : tensor<2x3x4xf64, #Tensor1>
bufferization.dealloc_tensor %s2 : tensor<2x3x4xf64, #Tensor2>
bufferization.dealloc_tensor %s3 : tensor<2x3x4xf64, #Tensor3>
return
}
//
// The second test suite (for singleton DimLevelTypes).
//
func.func @testSingleton() {
//
// Initialize a 3-dim dense tensor with the 3rd dim being singleton.
//
%src = arith.constant dense<[
[ [ 1.0, 0.0, 0.0, 0.0 ],
[ 0.0, 6.0, 0.0, 0.0 ],
[ 0.0, 0.0, 11.0, 0.0 ] ],
[ [ 0.0, 14.0, 0.0, 0.0 ],
[ 0.0, 0.0, 0.0, 20.0 ],
[ 21.0, 0.0, 0.0, 0.0 ] ]
]> : tensor<2x3x4xf64>
//
// Convert dense tensor directly to various sparse tensors.
//
%s1 = sparse_tensor.convert %src : tensor<2x3x4xf64> to tensor<2x3x4xf64, #SingletonTensor1>
%s2 = sparse_tensor.convert %src : tensor<2x3x4xf64> to tensor<2x3x4xf64, #SingletonTensor2>
%s3 = sparse_tensor.convert %src : tensor<2x3x4xf64> to tensor<2x3x4xf64, #SingletonTensor3>
//
// Convert sparse tensor directly to another sparse format.
//
%t12 = sparse_tensor.convert %s1 : tensor<2x3x4xf64, #SingletonTensor1> to tensor<2x3x4xf64, #SingletonTensor2>
%t13 = sparse_tensor.convert %s1 : tensor<2x3x4xf64, #SingletonTensor1> to tensor<2x3x4xf64, #SingletonTensor3>
%t21 = sparse_tensor.convert %s2 : tensor<2x3x4xf64, #SingletonTensor2> to tensor<2x3x4xf64, #SingletonTensor1>
%t23 = sparse_tensor.convert %s2 : tensor<2x3x4xf64, #SingletonTensor2> to tensor<2x3x4xf64, #SingletonTensor3>
%t31 = sparse_tensor.convert %s3 : tensor<2x3x4xf64, #SingletonTensor3> to tensor<2x3x4xf64, #SingletonTensor1>
%t32 = sparse_tensor.convert %s3 : tensor<2x3x4xf64, #SingletonTensor3> to tensor<2x3x4xf64, #SingletonTensor2>
//
// Convert sparse tensor back to dense.
//
%d12 = sparse_tensor.convert %t12 : tensor<2x3x4xf64, #SingletonTensor2> to tensor<2x3x4xf64>
%d13 = sparse_tensor.convert %t13 : tensor<2x3x4xf64, #SingletonTensor3> to tensor<2x3x4xf64>
%d21 = sparse_tensor.convert %t21 : tensor<2x3x4xf64, #SingletonTensor1> to tensor<2x3x4xf64>
%d23 = sparse_tensor.convert %t23 : tensor<2x3x4xf64, #SingletonTensor3> to tensor<2x3x4xf64>
%d31 = sparse_tensor.convert %t31 : tensor<2x3x4xf64, #SingletonTensor1> to tensor<2x3x4xf64>
%d32 = sparse_tensor.convert %t32 : tensor<2x3x4xf64, #SingletonTensor2> to tensor<2x3x4xf64>
//
// Check round-trip equality. And release dense tensors.
//
// CHECK-COUNT-7: ( ( ( 1, 0, 0, 0 ), ( 0, 6, 0, 0 ), ( 0, 0, 11, 0 ) ), ( ( 0, 14, 0, 0 ), ( 0, 0, 0, 20 ), ( 21, 0, 0, 0 ) ) )
call @dump(%src) : (tensor<2x3x4xf64>) -> ()
call @dump(%d12) : (tensor<2x3x4xf64>) -> ()
call @dump(%d13) : (tensor<2x3x4xf64>) -> ()
call @dump(%d21) : (tensor<2x3x4xf64>) -> ()
call @dump(%d23) : (tensor<2x3x4xf64>) -> ()
call @dump(%d31) : (tensor<2x3x4xf64>) -> ()
call @dump(%d32) : (tensor<2x3x4xf64>) -> ()
//
// Release sparse tensors.
//
bufferization.dealloc_tensor %t12 : tensor<2x3x4xf64, #SingletonTensor2>
bufferization.dealloc_tensor %t13 : tensor<2x3x4xf64, #SingletonTensor3>
bufferization.dealloc_tensor %t21 : tensor<2x3x4xf64, #SingletonTensor1>
bufferization.dealloc_tensor %t23 : tensor<2x3x4xf64, #SingletonTensor3>
bufferization.dealloc_tensor %t31 : tensor<2x3x4xf64, #SingletonTensor1>
bufferization.dealloc_tensor %t32 : tensor<2x3x4xf64, #SingletonTensor2>
bufferization.dealloc_tensor %s1 : tensor<2x3x4xf64, #SingletonTensor1>
bufferization.dealloc_tensor %s2 : tensor<2x3x4xf64, #SingletonTensor2>
bufferization.dealloc_tensor %s3 : tensor<2x3x4xf64, #SingletonTensor3>
return
}
//
// Main driver.
//
func.func @entry() {
call @testNonSingleton() : () -> ()
call @testSingleton() : () -> ()
return
}
}
|