1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
|
// DEFINE: %{option} = enable-runtime-library=true
// DEFINE: %{compile} = mlir-opt %s --sparse-compiler=%{option}
// DEFINE: %{run} = mlir-cpu-runner \
// DEFINE: -e entry -entry-point-result=void \
// DEFINE: -shared-libs=%mlir_c_runner_utils | \
// DEFINE: FileCheck %s
//
// RUN: %{compile} | %{run}
//
// Do the same run, but now with direct IR generation.
// REDEFINE: %{option} = enable-runtime-library=false
// RUN: %{compile} | %{run}
//
// Do the same run, but now with direct IR generation and vectorization.
// REDEFINE: %{option} = "enable-runtime-library=false vl=2 reassociate-fp-reductions=true enable-index-optimizations=true"
// RUN: %{compile} | %{run}
// Do the same run, but now with direct IR generation and, if available, VLA
// vectorization.
// REDEFINE: %{option} = "enable-runtime-library=false vl=4 enable-arm-sve=%ENABLE_VLA"
// REDEFINE: %{run} = %lli_host_or_aarch64_cmd \
// REDEFINE: --entry-function=entry_lli \
// REDEFINE: --extra-module=%S/Inputs/main_for_lli.ll \
// REDEFINE: %VLA_ARCH_ATTR_OPTIONS \
// REDEFINE: --dlopen=%mlir_native_utils_lib_dir/libmlir_c_runner_utils%shlibext | \
// REDEFINE: FileCheck %s
// RUN: %{compile} | mlir-translate -mlir-to-llvmir | %{run}
#SparseVector = #sparse_tensor.encoding<{
lvlTypes = ["compressed"]
}>
#SparseMatrix = #sparse_tensor.encoding<{
lvlTypes = ["compressed", "compressed"]
}>
#Sparse3dTensor = #sparse_tensor.encoding<{
lvlTypes = ["compressed", "compressed", "compressed"]
}>
#Sparse4dTensor = #sparse_tensor.encoding<{
lvlTypes = ["compressed", "compressed", "compressed", "compressed"]
}>
//
// Test with various forms of the two most elementary reshape
// operations: expand
//
module {
func.func @expand_dense(%arg0: tensor<12xf64>) -> tensor<3x4xf64> {
%0 = tensor.expand_shape %arg0 [[0, 1]] : tensor<12xf64> into tensor<3x4xf64>
return %0 : tensor<3x4xf64>
}
func.func @expand_from_sparse(%arg0: tensor<12xf64, #SparseVector>) -> tensor<3x4xf64> {
%0 = tensor.expand_shape %arg0 [[0, 1]] : tensor<12xf64, #SparseVector> into tensor<3x4xf64>
return %0 : tensor<3x4xf64>
}
func.func @expand_to_sparse(%arg0: tensor<12xf64>) -> tensor<3x4xf64, #SparseMatrix> {
%0 = tensor.expand_shape %arg0 [[0, 1]] : tensor<12xf64> into tensor<3x4xf64, #SparseMatrix>
return %0 : tensor<3x4xf64, #SparseMatrix>
}
func.func @expand_sparse2sparse(%arg0: tensor<12xf64, #SparseVector>) -> tensor<3x4xf64, #SparseMatrix> {
%0 = tensor.expand_shape %arg0 [[0, 1]] : tensor<12xf64, #SparseVector> into tensor<3x4xf64, #SparseMatrix>
return %0 : tensor<3x4xf64, #SparseMatrix>
}
func.func @expand_dense_3x2x2(%arg0: tensor<3x4xf64>) -> tensor<3x2x2xf64> {
%0 = tensor.expand_shape %arg0 [[0], [1, 2]] : tensor<3x4xf64> into tensor<3x2x2xf64>
return %0 : tensor<3x2x2xf64>
}
func.func @expand_from_sparse_3x2x2(%arg0: tensor<3x4xf64, #SparseMatrix>) -> tensor<3x2x2xf64> {
%0 = tensor.expand_shape %arg0 [[0], [1, 2]] : tensor<3x4xf64, #SparseMatrix> into tensor<3x2x2xf64>
return %0 : tensor<3x2x2xf64>
}
func.func @expand_to_sparse_3x2x2(%arg0: tensor<3x4xf64>) -> tensor<3x2x2xf64, #Sparse3dTensor> {
%0 = tensor.expand_shape %arg0 [[0], [1, 2]] : tensor<3x4xf64> into tensor<3x2x2xf64, #Sparse3dTensor>
return %0 : tensor<3x2x2xf64, #Sparse3dTensor>
}
func.func @expand_sparse2sparse_3x2x2(%arg0: tensor<3x4xf64, #SparseMatrix>) -> tensor<3x2x2xf64, #Sparse3dTensor> {
%0 = tensor.expand_shape %arg0 [[0], [1, 2]] : tensor<3x4xf64, #SparseMatrix> into tensor<3x2x2xf64, #Sparse3dTensor>
return %0 : tensor<3x2x2xf64, #Sparse3dTensor>
}
func.func @expand_dense_dyn(%arg0: tensor<?x?xf64>) -> tensor<?x2x?xf64> {
%0 = tensor.expand_shape %arg0 [[0], [1, 2]] : tensor<?x?xf64> into tensor<?x2x?xf64>
return %0 : tensor<?x2x?xf64>
}
func.func @expand_from_sparse_dyn(%arg0: tensor<?x?xf64, #SparseMatrix>) -> tensor<?x2x?xf64> {
%0 = tensor.expand_shape %arg0 [[0], [1, 2]] : tensor<?x?xf64, #SparseMatrix> into tensor<?x2x?xf64>
return %0 : tensor<?x2x?xf64>
}
func.func @expand_to_sparse_dyn(%arg0: tensor<?x?xf64>) -> tensor<?x2x?xf64, #Sparse3dTensor> {
%0 = tensor.expand_shape %arg0 [[0], [1, 2]] : tensor<?x?xf64> into tensor<?x2x?xf64, #Sparse3dTensor>
return %0 : tensor<?x2x?xf64, #Sparse3dTensor>
}
func.func @expand_sparse2sparse_dyn(%arg0: tensor<?x?xf64, #SparseMatrix>) -> tensor<?x2x?xf64, #Sparse3dTensor> {
%0 = tensor.expand_shape %arg0 [[0], [1, 2]] : tensor<?x?xf64, #SparseMatrix> into tensor<?x2x?xf64, #Sparse3dTensor>
return %0 : tensor<?x2x?xf64, #Sparse3dTensor>
}
//
// Main driver.
//
func.func @entry() {
%c0 = arith.constant 0 : index
%df = arith.constant -1.0 : f64
// Setup test vectors and matrices..
%v = arith.constant dense <[ 1.0, 0.0, 3.0, 0.0, 5.0, 0.0,
7.0, 0.0, 9.0, 0.0, 11.0, 0.0]> : tensor<12xf64>
%m = arith.constant dense <[ [ 1.1, 1.2, 1.3, 1.4 ],
[ 2.1, 2.2, 2.3, 2.4 ],
[ 3.1, 3.2, 3.3, 3.4 ]]> : tensor<3x4xf64>
%sv = sparse_tensor.convert %v : tensor<12xf64> to tensor<12xf64, #SparseVector>
%sm = sparse_tensor.convert %m : tensor<3x4xf64> to tensor<3x4xf64, #SparseMatrix>
%dm = tensor.cast %m : tensor<3x4xf64> to tensor<?x?xf64>
%sdm = sparse_tensor.convert %dm : tensor<?x?xf64> to tensor<?x?xf64, #SparseMatrix>
// Call the kernels.
%expand0 = call @expand_dense(%v) : (tensor<12xf64>) -> tensor<3x4xf64>
%expand1 = call @expand_from_sparse(%sv) : (tensor<12xf64, #SparseVector>) -> tensor<3x4xf64>
%expand2 = call @expand_to_sparse(%v) : (tensor<12xf64>) -> tensor<3x4xf64, #SparseMatrix>
%expand3 = call @expand_sparse2sparse(%sv) : (tensor<12xf64, #SparseVector>) -> tensor<3x4xf64, #SparseMatrix>
%expand4 = call @expand_dense_3x2x2(%m) : (tensor<3x4xf64>) -> tensor<3x2x2xf64>
%expand5 = call @expand_from_sparse_3x2x2(%sm) : (tensor<3x4xf64, #SparseMatrix>) -> tensor<3x2x2xf64>
%expand6 = call @expand_to_sparse_3x2x2(%m) : (tensor<3x4xf64>) -> tensor<3x2x2xf64, #Sparse3dTensor>
%expand7 = call @expand_sparse2sparse_3x2x2(%sm) : (tensor<3x4xf64, #SparseMatrix>) -> tensor<3x2x2xf64, #Sparse3dTensor>
%expand8 = call @expand_dense_dyn(%dm) : (tensor<?x?xf64>) -> tensor<?x2x?xf64>
%expand9 = call @expand_from_sparse_dyn(%sdm) : (tensor<?x?xf64, #SparseMatrix>) -> tensor<?x2x?xf64>
%expand10 = call @expand_to_sparse_dyn(%dm) : (tensor<?x?xf64>) -> tensor<?x2x?xf64, #Sparse3dTensor>
%expand11 = call @expand_sparse2sparse_dyn(%sdm) : (tensor<?x?xf64, #SparseMatrix>) -> tensor<?x2x?xf64, #Sparse3dTensor>
//
// Verify results of expand
//
// CHECK: ( ( 1, 0, 3, 0 ), ( 5, 0, 7, 0 ), ( 9, 0, 11, 0 ) )
// CHECK-NEXT: ( ( 1, 0, 3, 0 ), ( 5, 0, 7, 0 ), ( 9, 0, 11, 0 ) )
// CHECK-NEXT: ( 1, 3, 5, 7, 9,
// CHECK-NEXT: ( 1, 3, 5, 7, 9,
// CHECK-NEXT: ( ( ( 1.1, 1.2 ), ( 1.3, 1.4 ) ), ( ( 2.1, 2.2 ), ( 2.3, 2.4 ) ), ( ( 3.1, 3.2 ), ( 3.3, 3.4 ) ) )
// CHECK-NEXT: ( ( ( 1.1, 1.2 ), ( 1.3, 1.4 ) ), ( ( 2.1, 2.2 ), ( 2.3, 2.4 ) ), ( ( 3.1, 3.2 ), ( 3.3, 3.4 ) ) )
// CHECK-NEXT: ( 1.1, 1.2, 1.3, 1.4, 2.1, 2.2, 2.3, 2.4, 3.1, 3.2, 3.3, 3.4 )
// CHECK-NEXT: ( 1.1, 1.2, 1.3, 1.4, 2.1, 2.2, 2.3, 2.4, 3.1, 3.2, 3.3, 3.4 )
// CHECK-NEXT: ( ( ( 1.1, 1.2 ), ( 1.3, 1.4 ) ), ( ( 2.1, 2.2 ), ( 2.3, 2.4 ) ), ( ( 3.1, 3.2 ), ( 3.3, 3.4 ) ) )
// CHECK-NEXT: ( ( ( 1.1, 1.2 ), ( 1.3, 1.4 ) ), ( ( 2.1, 2.2 ), ( 2.3, 2.4 ) ), ( ( 3.1, 3.2 ), ( 3.3, 3.4 ) ) )
// CHECK-NEXT: 12
// CHECK-NEXT: ( 1.1, 1.2, 1.3, 1.4, 2.1, 2.2, 2.3, 2.4, 3.1, 3.2, 3.3, 3.4 )
// CHECK-NEXT: 12
// CHECK-NEXT: ( 1.1, 1.2, 1.3, 1.4, 2.1, 2.2, 2.3, 2.4, 3.1, 3.2, 3.3, 3.4 )
//
%m0 = vector.transfer_read %expand0[%c0, %c0], %df: tensor<3x4xf64>, vector<3x4xf64>
vector.print %m0 : vector<3x4xf64>
%m1 = vector.transfer_read %expand1[%c0, %c0], %df: tensor<3x4xf64>, vector<3x4xf64>
vector.print %m1 : vector<3x4xf64>
%a2 = sparse_tensor.values %expand2 : tensor<3x4xf64, #SparseMatrix> to memref<?xf64>
%m2 = vector.transfer_read %a2[%c0], %df: memref<?xf64>, vector<12xf64>
vector.print %m2 : vector<12xf64>
%a3 = sparse_tensor.values %expand3 : tensor<3x4xf64, #SparseMatrix> to memref<?xf64>
%m3 = vector.transfer_read %a3[%c0], %df: memref<?xf64>, vector<12xf64>
vector.print %m3 : vector<12xf64>
%m4 = vector.transfer_read %expand4[%c0, %c0, %c0], %df: tensor<3x2x2xf64>, vector<3x2x2xf64>
vector.print %m4 : vector<3x2x2xf64>
%m5 = vector.transfer_read %expand5[%c0, %c0, %c0], %df: tensor<3x2x2xf64>, vector<3x2x2xf64>
vector.print %m5 : vector<3x2x2xf64>
%a6 = sparse_tensor.values %expand6 : tensor<3x2x2xf64, #Sparse3dTensor> to memref<?xf64>
%m6 = vector.transfer_read %a6[%c0], %df: memref<?xf64>, vector<12xf64>
vector.print %m6 : vector<12xf64>
%a7 = sparse_tensor.values %expand7 : tensor<3x2x2xf64, #Sparse3dTensor> to memref<?xf64>
%m7 = vector.transfer_read %a7[%c0], %df: memref<?xf64>, vector<12xf64>
vector.print %m7 : vector<12xf64>
%m8 = vector.transfer_read %expand8[%c0, %c0, %c0], %df: tensor<?x2x?xf64>, vector<3x2x2xf64>
vector.print %m8 : vector<3x2x2xf64>
%m9 = vector.transfer_read %expand9[%c0, %c0, %c0], %df: tensor<?x2x?xf64>, vector<3x2x2xf64>
vector.print %m9 : vector<3x2x2xf64>
%n10 = sparse_tensor.number_of_entries %expand10 : tensor<?x2x?xf64, #Sparse3dTensor>
vector.print %n10 : index
%a10 = sparse_tensor.values %expand10 : tensor<?x2x?xf64, #Sparse3dTensor> to memref<?xf64>
%m10 = vector.transfer_read %a10[%c0], %df: memref<?xf64>, vector<12xf64>
vector.print %m10 : vector<12xf64>
%n11 = sparse_tensor.number_of_entries %expand11 : tensor<?x2x?xf64, #Sparse3dTensor>
vector.print %n11 : index
%a11 = sparse_tensor.values %expand11 : tensor<?x2x?xf64, #Sparse3dTensor> to memref<?xf64>
%m11 = vector.transfer_read %a11[%c0], %df: memref<?xf64>, vector<12xf64>
vector.print %m11 : vector<12xf64>
// Release sparse resources.
bufferization.dealloc_tensor %sv : tensor<12xf64, #SparseVector>
bufferization.dealloc_tensor %sm : tensor<3x4xf64, #SparseMatrix>
bufferization.dealloc_tensor %sdm : tensor<?x?xf64, #SparseMatrix>
bufferization.dealloc_tensor %expand2 : tensor<3x4xf64, #SparseMatrix>
bufferization.dealloc_tensor %expand3 : tensor<3x4xf64, #SparseMatrix>
bufferization.dealloc_tensor %expand6 : tensor<3x2x2xf64, #Sparse3dTensor>
bufferization.dealloc_tensor %expand7 : tensor<3x2x2xf64, #Sparse3dTensor>
bufferization.dealloc_tensor %expand10 : tensor<?x2x?xf64, #Sparse3dTensor>
bufferization.dealloc_tensor %expand11 : tensor<?x2x?xf64, #Sparse3dTensor>
// Release dense resources.
bufferization.dealloc_tensor %expand1 : tensor<3x4xf64>
bufferization.dealloc_tensor %expand5 : tensor<3x2x2xf64>
bufferization.dealloc_tensor %expand9 : tensor<?x2x?xf64>
return
}
}
|