1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
|
// DEFINE: %{option} = enable-runtime-library=true
// DEFINE: %{compile} = mlir-opt %s --sparse-compiler=%{option}
// DEFINE: %{run} = TENSOR0="%mlir_src_dir/test/Integration/data/mttkrp_b.tns" \
// DEFINE: mlir-cpu-runner \
// DEFINE: -e entry -entry-point-result=void \
// DEFINE: -shared-libs=%mlir_c_runner_utils,%mlir_runner_utils | \
// DEFINE: FileCheck %s
//
// RUN: %{compile} | %{run}
//
// Do the same run, but now with direct IR generation.
// REDEFINE: %{option} = enable-runtime-library=false
// RUN: %{compile} | %{run}
//
// Do the same run, but now with direct IR generation and vectorization.
// REDEFINE: %{option} = "enable-runtime-library=false vl=2 reassociate-fp-reductions=true enable-index-optimizations=true"
// RUN: %{compile} | %{run}
// Do the same run, but now with direct IR generation and, if available, VLA
// vectorization.
// REDEFINE: %{option} = "enable-runtime-library=false vl=4 enable-arm-sve=%ENABLE_VLA"
// REDEFINE: %{run} = TENSOR0="%mlir_src_dir/test/Integration/data/mttkrp_b.tns" \
// REDEFINE: %lli_host_or_aarch64_cmd \
// REDEFINE: --entry-function=entry_lli \
// REDEFINE: --extra-module=%S/Inputs/main_for_lli.ll \
// REDEFINE: %VLA_ARCH_ATTR_OPTIONS \
// REDEFINE: --dlopen=%mlir_native_utils_lib_dir/libmlir_c_runner_utils%shlibext -dlopen=%mlir_runner_utils| \
// REDEFINE: FileCheck %s
// RUN: %{compile} | mlir-translate -mlir-to-llvmir | %{run}
!Filename = !llvm.ptr<i8>
#SparseTensor = #sparse_tensor.encoding<{
lvlTypes = [ "compressed", "compressed", "compressed" ]
}>
#mttkrp = {
indexing_maps = [
affine_map<(i,j,k,l) -> (i,k,l)>, // B
affine_map<(i,j,k,l) -> (k,j)>, // C
affine_map<(i,j,k,l) -> (l,j)>, // D
affine_map<(i,j,k,l) -> (i,j)> // A (out)
],
iterator_types = ["parallel", "parallel", "reduction", "reduction"],
doc = "A(i,j) += B(i,k,l) * D(l,j) * C(k,j)"
}
//
// Integration test that lowers a kernel annotated as sparse to
// actual sparse code, initializes a matching sparse storage scheme
// from file, and runs the resulting code with the JIT compiler.
//
module {
func.func private @printMemrefF64(%ptr : tensor<*xf64>)
//
// Computes Matricized Tensor Times Khatri-Rao Product (MTTKRP) kernel. See
// http://tensor-compiler.org/docs/data_analytics/index.html.
//
func.func @kernel_mttkrp(%argb: tensor<?x?x?xf64, #SparseTensor>,
%argc: tensor<?x?xf64>,
%argd: tensor<?x?xf64>,
%arga: tensor<?x?xf64>)
-> tensor<?x?xf64> {
%0 = linalg.generic #mttkrp
ins(%argb, %argc, %argd:
tensor<?x?x?xf64, #SparseTensor>, tensor<?x?xf64>, tensor<?x?xf64>)
outs(%arga: tensor<?x?xf64>) {
^bb(%b: f64, %c: f64, %d: f64, %a: f64):
%0 = arith.mulf %b, %c : f64
%1 = arith.mulf %d, %0 : f64
%2 = arith.addf %a, %1 : f64
linalg.yield %2 : f64
} -> tensor<?x?xf64>
return %0 : tensor<?x?xf64>
}
func.func private @getTensorFilename(index) -> (!Filename)
//
// Main driver that reads matrix from file and calls the sparse kernel.
//
func.func @entry() {
%f0 = arith.constant 0.0 : f64
%cst0 = arith.constant 0 : index
%cst1 = arith.constant 1 : index
%cst2 = arith.constant 2 : index
// Read the sparse input tensor B from a file.
%fileName = call @getTensorFilename(%cst0) : (index) -> (!Filename)
%b = sparse_tensor.new %fileName
: !Filename to tensor<?x?x?xf64, #SparseTensor>
// Get sizes from B, pick a fixed size for dim-2 of A.
%isz = tensor.dim %b, %cst0 : tensor<?x?x?xf64, #SparseTensor>
%jsz = arith.constant 5 : index
%ksz = tensor.dim %b, %cst1 : tensor<?x?x?xf64, #SparseTensor>
%lsz = tensor.dim %b, %cst2 : tensor<?x?x?xf64, #SparseTensor>
// Initialize dense input matrix C.
%c = tensor.generate %ksz, %jsz {
^bb0(%k : index, %j : index):
%k0 = arith.muli %k, %jsz : index
%k1 = arith.addi %k0, %j : index
%k2 = arith.index_cast %k1 : index to i32
%kf = arith.sitofp %k2 : i32 to f64
tensor.yield %kf : f64
} : tensor<?x?xf64>
// Initialize dense input matrix D.
%d = tensor.generate %lsz, %jsz {
^bb0(%l : index, %j : index):
%k0 = arith.muli %l, %jsz : index
%k1 = arith.addi %k0, %j : index
%k2 = arith.index_cast %k1 : index to i32
%kf = arith.sitofp %k2 : i32 to f64
tensor.yield %kf : f64
} : tensor<?x?xf64>
// Initialize dense output matrix A.
%a = tensor.generate %isz, %jsz {
^bb0(%i : index, %j: index):
tensor.yield %f0 : f64
} : tensor<?x?xf64>
// Call kernel.
%0 = call @kernel_mttkrp(%b, %c, %d, %a)
: (tensor<?x?x?xf64, #SparseTensor>,
tensor<?x?xf64>, tensor<?x?xf64>, tensor<?x?xf64>) -> tensor<?x?xf64>
// Print the result for verification.
//
// CHECK: {{\[}}[16075, 21930, 28505, 35800, 43815],
// CHECK-NEXT: [10000, 14225, 19180, 24865, 31280]]
//
%u = tensor.cast %0: tensor<?x?xf64> to tensor<*xf64>
call @printMemrefF64(%u) : (tensor<*xf64>) -> ()
// Release the resources.
bufferization.dealloc_tensor %b : tensor<?x?x?xf64, #SparseTensor>
return
}
}
|