File: sparse_re_im.mlir

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (119 lines) | stat: -rw-r--r-- 4,654 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
// DEFINE: %{option} = enable-runtime-library=true
// DEFINE: %{compile} = mlir-opt %s --sparse-compiler=%{option}
// DEFINE: %{run} = mlir-cpu-runner \
// DEFINE:  -e entry -entry-point-result=void  \
// DEFINE:  -shared-libs=%mlir_c_runner_utils | \
// DEFINE: FileCheck %s
//
// RUN: %{compile} | %{run}
//
// Do the same run, but now with direct IR generation.
// REDEFINE: %{option} = enable-runtime-library=false
// RUN: %{compile} | %{run}
//
// Do the same run, but now with direct IR generation and vectorization.
// REDEFINE: %{option} = "enable-runtime-library=false vl=2 reassociate-fp-reductions=true enable-index-optimizations=true"
// RUN: %{compile} | %{run}

// Do the same run, but now with direct IR generation and, if available, VLA
// vectorization.
// REDEFINE: %{option} = "enable-runtime-library=false vl=4 enable-arm-sve=%ENABLE_VLA"
// REDEFINE: %{run} = %lli_host_or_aarch64_cmd \
// REDEFINE:   --entry-function=entry_lli \
// REDEFINE:   --extra-module=%S/Inputs/main_for_lli.ll \
// REDEFINE:   %VLA_ARCH_ATTR_OPTIONS \
// REDEFINE:   --dlopen=%mlir_native_utils_lib_dir/libmlir_c_runner_utils%shlibext | \
// REDEFINE: FileCheck %s
// RUN: %{compile} | mlir-translate -mlir-to-llvmir | %{run}

#SparseVector = #sparse_tensor.encoding<{lvlTypes = ["compressed"]}>

#trait_op = {
  indexing_maps = [
    affine_map<(i) -> (i)>,  // a (in)
    affine_map<(i) -> (i)>   // x (out)
  ],
  iterator_types = ["parallel"],
  doc = "x(i) = OP a(i)"
}

module {
  func.func @cre(%arga: tensor<?xcomplex<f32>, #SparseVector>)
                -> tensor<?xf32, #SparseVector> {
    %c = arith.constant 0 : index
    %d = tensor.dim %arga, %c : tensor<?xcomplex<f32>, #SparseVector>
    %xv = bufferization.alloc_tensor(%d) : tensor<?xf32, #SparseVector>
    %0 = linalg.generic #trait_op
       ins(%arga: tensor<?xcomplex<f32>, #SparseVector>)
        outs(%xv: tensor<?xf32, #SparseVector>) {
        ^bb(%a: complex<f32>, %x: f32):
          %1 = complex.re %a : complex<f32>
          linalg.yield %1 : f32
    } -> tensor<?xf32, #SparseVector>
    return %0 : tensor<?xf32, #SparseVector>
  }

  func.func @cim(%arga: tensor<?xcomplex<f32>, #SparseVector>)
                -> tensor<?xf32, #SparseVector> {
    %c = arith.constant 0 : index
    %d = tensor.dim %arga, %c : tensor<?xcomplex<f32>, #SparseVector>
    %xv = bufferization.alloc_tensor(%d) : tensor<?xf32, #SparseVector>
    %0 = linalg.generic #trait_op
       ins(%arga: tensor<?xcomplex<f32>, #SparseVector>)
        outs(%xv: tensor<?xf32, #SparseVector>) {
        ^bb(%a: complex<f32>, %x: f32):
          %1 = complex.im %a : complex<f32>
          linalg.yield %1 : f32
    } -> tensor<?xf32, #SparseVector>
    return %0 : tensor<?xf32, #SparseVector>
  }

  func.func @dump(%arg0: tensor<?xf32, #SparseVector>) {
    %c0 = arith.constant 0 : index
    %d0 = arith.constant -1.0 : f32
    %n = sparse_tensor.number_of_entries %arg0 : tensor<?xf32, #SparseVector>
    vector.print %n : index
    %values = sparse_tensor.values %arg0 : tensor<?xf32, #SparseVector> to memref<?xf32>
    %0 = vector.transfer_read %values[%c0], %d0: memref<?xf32>, vector<3xf32>
    vector.print %0 : vector<3xf32>
    %coordinates = sparse_tensor.coordinates %arg0 { level = 0 : index } : tensor<?xf32, #SparseVector> to memref<?xindex>
    %1 = vector.transfer_read %coordinates[%c0], %c0: memref<?xindex>, vector<3xindex>
    vector.print %1 : vector<3xindex>
    return
  }

  // Driver method to call and verify functions cim and cre.
  func.func @entry() {
    // Setup sparse vectors.
    %v1 = arith.constant sparse<
       [ [0], [20], [31] ],
         [ (5.13, 2.0), (3.0, 4.0), (5.0, 6.0) ] > : tensor<32xcomplex<f32>>
    %sv1 = sparse_tensor.convert %v1 : tensor<32xcomplex<f32>> to tensor<?xcomplex<f32>, #SparseVector>

    // Call sparse vector kernels.
    %0 = call @cre(%sv1)
       : (tensor<?xcomplex<f32>, #SparseVector>) -> tensor<?xf32, #SparseVector>

    %1 = call @cim(%sv1)
       : (tensor<?xcomplex<f32>, #SparseVector>) -> tensor<?xf32, #SparseVector>

    //
    // Verify the results.
    //
    // CHECK:      3
    // CHECK-NEXT: ( 5.13, 3, 5 )
    // CHECK-NEXT: ( 0, 20, 31 )
    // CHECK-NEXT: 3
    // CHECK-NEXT: ( 2, 4, 6 )
    // CHECK-NEXT: ( 0, 20, 31 )
    //
    call @dump(%0) : (tensor<?xf32, #SparseVector>) -> ()
    call @dump(%1) : (tensor<?xf32, #SparseVector>) -> ()

    // Release the resources.
    bufferization.dealloc_tensor %sv1 : tensor<?xcomplex<f32>, #SparseVector>
    bufferization.dealloc_tensor %0 : tensor<?xf32, #SparseVector>
    bufferization.dealloc_tensor %1 : tensor<?xf32, #SparseVector>
    return
  }
}