File: sparse_reductions.mlir

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (154 lines) | stat: -rw-r--r-- 5,123 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
// DEFINE: %{option} = enable-runtime-library=true
// DEFINE: %{compile} = mlir-opt %s --sparse-compiler=%{option}
// DEFINE: %{run} = mlir-cpu-runner \
// DEFINE:  -e entry -entry-point-result=void  \
// DEFINE:  -shared-libs=%mlir_c_runner_utils | \
// DEFINE: FileCheck %s
//
// RUN: %{compile} | %{run}
//
// Do the same run, but now with direct IR generation.
// REDEFINE: %{option} = enable-runtime-library=false
// RUN: %{compile} | %{run}
//
// Do the same run, but now with direct IR generation and vectorization.
// REDEFINE: %{option} = "enable-runtime-library=false vl=2 reassociate-fp-reductions=true enable-index-optimizations=true"
// RUN: %{compile} | %{run}

// Do the same run, but now with direct IR generation and, if available, VLA
// vectorization.
// REDEFINE: %{option} = "enable-runtime-library=false vl=4 enable-arm-sve=%ENABLE_VLA"
// REDEFINE: %{run} = %lli_host_or_aarch64_cmd \
// REDEFINE:   --entry-function=entry_lli \
// REDEFINE:   --extra-module=%S/Inputs/main_for_lli.ll \
// REDEFINE:   %VLA_ARCH_ATTR_OPTIONS \
// REDEFINE:   --dlopen=%mlir_native_utils_lib_dir/libmlir_c_runner_utils%shlibext | \
// REDEFINE: FileCheck %s

// Reduction in this file _are_ supported by the AArch64 SVE backend

#SV = #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>

#trait_reduction = {
  indexing_maps = [
    affine_map<(i) -> (i)>,  // a
    affine_map<(i) -> ()>    // x (scalar out)
  ],
  iterator_types = ["reduction"],
  doc = "x += OPER_i a(i)"
}

// An example of vector reductions.
module {

  func.func @sum_reduction_i32(%arga: tensor<32xi32, #SV>,
                          %argx: tensor<i32>) -> tensor<i32> {
    %0 = linalg.generic #trait_reduction
      ins(%arga: tensor<32xi32, #SV>)
      outs(%argx: tensor<i32>) {
        ^bb(%a: i32, %x: i32):
          %0 = arith.addi %x, %a : i32
          linalg.yield %0 : i32
    } -> tensor<i32>
    return %0 : tensor<i32>
  }

  func.func @sum_reduction_f32(%arga: tensor<32xf32, #SV>,
                          %argx: tensor<f32>) -> tensor<f32> {
    %0 = linalg.generic #trait_reduction
      ins(%arga: tensor<32xf32, #SV>)
      outs(%argx: tensor<f32>) {
        ^bb(%a: f32, %x: f32):
          %0 = arith.addf %x, %a : f32
          linalg.yield %0 : f32
    } -> tensor<f32>
    return %0 : tensor<f32>
  }

  func.func @or_reduction_i32(%arga: tensor<32xi32, #SV>,
                         %argx: tensor<i32>) -> tensor<i32> {
    %0 = linalg.generic #trait_reduction
      ins(%arga: tensor<32xi32, #SV>)
      outs(%argx: tensor<i32>) {
        ^bb(%a: i32, %x: i32):
          %0 = arith.ori %x, %a : i32
          linalg.yield %0 : i32
    } -> tensor<i32>
    return %0 : tensor<i32>
  }

  func.func @xor_reduction_i32(%arga: tensor<32xi32, #SV>,
                          %argx: tensor<i32>) -> tensor<i32> {
    %0 = linalg.generic #trait_reduction
      ins(%arga: tensor<32xi32, #SV>)
      outs(%argx: tensor<i32>) {
        ^bb(%a: i32, %x: i32):
          %0 = arith.xori %x, %a : i32
          linalg.yield %0 : i32
    } -> tensor<i32>
    return %0 : tensor<i32>
  }

  func.func @dump_i32(%arg0 : tensor<i32>) {
    %v = tensor.extract %arg0[] : tensor<i32>
    vector.print %v : i32
    return
  }

  func.func @dump_f32(%arg0 : tensor<f32>) {
    %v = tensor.extract %arg0[] : tensor<f32>
    vector.print %v : f32
    return
  }

  func.func @entry() {
    %ri = arith.constant dense< 7   > : tensor<i32>
    %rf = arith.constant dense< 2.0 > : tensor<f32>

    %c_0_i32 = arith.constant dense<[
      0, 2, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 4, 0, 0, 0,
      0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9, 0
    ]> : tensor<32xi32>

    %c_0_f32 = arith.constant dense<[
      0.0, 1.0, 0.0, 0.0, 4.0, 0.0, 0.0, 0.0,
      0.0, 0.0, 3.0, 0.0, 0.0, 0.0, 0.0, 0.0,
      0.0, 0.0, 0.0, 0.0, 2.5, 0.0, 0.0, 0.0,
      2.0, 0.0, 0.0, 0.0, 0.0, 4.0, 0.0, 9.0
    ]> : tensor<32xf32>

    // Convert constants to annotated tensors.
    %sparse_input_i32 = sparse_tensor.convert %c_0_i32
      : tensor<32xi32> to tensor<32xi32, #SV>
    %sparse_input_f32 = sparse_tensor.convert %c_0_f32
      : tensor<32xf32> to tensor<32xf32, #SV>

    // Call the kernels.
    %0 = call @sum_reduction_i32(%sparse_input_i32, %ri)
       : (tensor<32xi32, #SV>, tensor<i32>) -> tensor<i32>
    %1 = call @sum_reduction_f32(%sparse_input_f32, %rf)
       : (tensor<32xf32, #SV>, tensor<f32>) -> tensor<f32>
    %2 = call @or_reduction_i32(%sparse_input_i32, %ri)
       : (tensor<32xi32, #SV>, tensor<i32>) -> tensor<i32>
    %3 = call @xor_reduction_i32(%sparse_input_i32, %ri)
       : (tensor<32xi32, #SV>, tensor<i32>) -> tensor<i32>

    // Verify results.
    //
    // CHECK: 26
    // CHECK: 27.5
    // CHECK: 15
    // CHECK: 10
    //
    call @dump_i32(%0) : (tensor<i32>) -> ()
    call @dump_f32(%1) : (tensor<f32>) -> ()
    call @dump_i32(%2) : (tensor<i32>) -> ()
    call @dump_i32(%3) : (tensor<i32>) -> ()

    // Release the resources.
    bufferization.dealloc_tensor %sparse_input_i32 : tensor<32xi32, #SV>
    bufferization.dealloc_tensor %sparse_input_f32 : tensor<32xf32, #SV>

    return
  }
}