1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
|
// DEFINE: %{option} = enable-runtime-library=true
// DEFINE: %{compile} = mlir-opt %s --sparse-compiler=%{option}
// DEFINE: %{run} = mlir-cpu-runner \
// DEFINE: -e entry -entry-point-result=void \
// DEFINE: -shared-libs=%mlir_c_runner_utils | \
// DEFINE: FileCheck %s
//
// RUN: %{compile} | %{run}
//
// Do the same run, but now with direct IR generation.
// REDEFINE: %{option} = enable-runtime-library=false
// RUN: %{compile} | %{run}
//
// Do the same run, but now with direct IR generation and vectorization.
// REDEFINE: %{option} = "enable-runtime-library=false vl=2 reassociate-fp-reductions=true enable-index-optimizations=true"
// RUN: %{compile} | %{run}
// Do the same run, but now with direct IR generation and, if available, VLA
// vectorization.
// REDEFINE: %{option} = "enable-runtime-library=false vl=4 enable-arm-sve=%ENABLE_VLA"
// REDEFINE: %{run} = %lli_host_or_aarch64_cmd \
// REDEFINE: --entry-function=entry_lli \
// REDEFINE: --extra-module=%S/Inputs/main_for_lli.ll \
// REDEFINE: %VLA_ARCH_ATTR_OPTIONS \
// REDEFINE: --dlopen=%mlir_native_utils_lib_dir/libmlir_c_runner_utils%shlibext | \
// REDEFINE: FileCheck %s
// Reduction in this file _are_ supported by the AArch64 SVE backend
#SV = #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>
#trait_reduction = {
indexing_maps = [
affine_map<(i) -> (i)>, // a
affine_map<(i) -> ()> // x (scalar out)
],
iterator_types = ["reduction"],
doc = "x += OPER_i a(i)"
}
// An example of vector reductions.
module {
func.func @sum_reduction_i32(%arga: tensor<32xi32, #SV>,
%argx: tensor<i32>) -> tensor<i32> {
%0 = linalg.generic #trait_reduction
ins(%arga: tensor<32xi32, #SV>)
outs(%argx: tensor<i32>) {
^bb(%a: i32, %x: i32):
%0 = arith.addi %x, %a : i32
linalg.yield %0 : i32
} -> tensor<i32>
return %0 : tensor<i32>
}
func.func @sum_reduction_f32(%arga: tensor<32xf32, #SV>,
%argx: tensor<f32>) -> tensor<f32> {
%0 = linalg.generic #trait_reduction
ins(%arga: tensor<32xf32, #SV>)
outs(%argx: tensor<f32>) {
^bb(%a: f32, %x: f32):
%0 = arith.addf %x, %a : f32
linalg.yield %0 : f32
} -> tensor<f32>
return %0 : tensor<f32>
}
func.func @or_reduction_i32(%arga: tensor<32xi32, #SV>,
%argx: tensor<i32>) -> tensor<i32> {
%0 = linalg.generic #trait_reduction
ins(%arga: tensor<32xi32, #SV>)
outs(%argx: tensor<i32>) {
^bb(%a: i32, %x: i32):
%0 = arith.ori %x, %a : i32
linalg.yield %0 : i32
} -> tensor<i32>
return %0 : tensor<i32>
}
func.func @xor_reduction_i32(%arga: tensor<32xi32, #SV>,
%argx: tensor<i32>) -> tensor<i32> {
%0 = linalg.generic #trait_reduction
ins(%arga: tensor<32xi32, #SV>)
outs(%argx: tensor<i32>) {
^bb(%a: i32, %x: i32):
%0 = arith.xori %x, %a : i32
linalg.yield %0 : i32
} -> tensor<i32>
return %0 : tensor<i32>
}
func.func @dump_i32(%arg0 : tensor<i32>) {
%v = tensor.extract %arg0[] : tensor<i32>
vector.print %v : i32
return
}
func.func @dump_f32(%arg0 : tensor<f32>) {
%v = tensor.extract %arg0[] : tensor<f32>
vector.print %v : f32
return
}
func.func @entry() {
%ri = arith.constant dense< 7 > : tensor<i32>
%rf = arith.constant dense< 2.0 > : tensor<f32>
%c_0_i32 = arith.constant dense<[
0, 2, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 4, 0, 0, 0,
0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9, 0
]> : tensor<32xi32>
%c_0_f32 = arith.constant dense<[
0.0, 1.0, 0.0, 0.0, 4.0, 0.0, 0.0, 0.0,
0.0, 0.0, 3.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 2.5, 0.0, 0.0, 0.0,
2.0, 0.0, 0.0, 0.0, 0.0, 4.0, 0.0, 9.0
]> : tensor<32xf32>
// Convert constants to annotated tensors.
%sparse_input_i32 = sparse_tensor.convert %c_0_i32
: tensor<32xi32> to tensor<32xi32, #SV>
%sparse_input_f32 = sparse_tensor.convert %c_0_f32
: tensor<32xf32> to tensor<32xf32, #SV>
// Call the kernels.
%0 = call @sum_reduction_i32(%sparse_input_i32, %ri)
: (tensor<32xi32, #SV>, tensor<i32>) -> tensor<i32>
%1 = call @sum_reduction_f32(%sparse_input_f32, %rf)
: (tensor<32xf32, #SV>, tensor<f32>) -> tensor<f32>
%2 = call @or_reduction_i32(%sparse_input_i32, %ri)
: (tensor<32xi32, #SV>, tensor<i32>) -> tensor<i32>
%3 = call @xor_reduction_i32(%sparse_input_i32, %ri)
: (tensor<32xi32, #SV>, tensor<i32>) -> tensor<i32>
// Verify results.
//
// CHECK: 26
// CHECK: 27.5
// CHECK: 15
// CHECK: 10
//
call @dump_i32(%0) : (tensor<i32>) -> ()
call @dump_f32(%1) : (tensor<f32>) -> ()
call @dump_i32(%2) : (tensor<i32>) -> ()
call @dump_i32(%3) : (tensor<i32>) -> ()
// Release the resources.
bufferization.dealloc_tensor %sparse_input_i32 : tensor<32xi32, #SV>
bufferization.dealloc_tensor %sparse_input_f32 : tensor<32xf32, #SV>
return
}
}
|